
TSref
Extension Key: doc_core_tsref

Copyright 2000-2007, kasperYYYY@typo3.com, <kasperYYYY@typo3.com>

This document is published under the Open Content License

available from http://www.opencontent.org/opl.shtml

The content of this document is related to TYPO3

- a GNU/GPL CMS/Framework available from www.typo3.com

Revised for TYPO3 4.1, April 2007

TSref - 1

Table of Contents
TSref... 1

Introduction.. 3
Warning.. 3
General information.. 3

Data types.. 4
Introduction.. 4
Datatype reference... 4

Data types: Object types.. 9
Objects and properties............................. 10

Introduction.. 10
Reference to objects:... 10
Calculating values (+calc):....................................... 10
"... /stdWrap":... 10
optionSplit:..10

Conditions.. 14
Condition reference: ... 14

browser... 14
version.. 15
system.. 15
device... 15
useragent ...16
language... 17
IP.. 17
hostname..18
hour.. 18
minute... 18
dayofweek.. 18
dayofmonth... 18
month..19
usergroup... 19
loginUser.. 19
treeLevel... 19
PIDinRootline..20
PIDupinRootline..20
compatVersion... 20
globalVars:..20
globalString:..20
userFunc:..21

Functions:.. 23
stdWrap:... 23
imgResource:... 29
imageLinkWrap:... 31
numRows:...32
select:... 32
split:.. 33
if:... 34
typolink:.. 35
textStyle.. 39
encapsLines... 40
tableStyle.. 42
addParams... 42
filelink..43
parseFunc:..45
makelinks:.. 47
tags:.. 49
HTMLparser:...49
HTMLparser_tags:.. 50

Constants... 52
What are constants?..52

Inserting constants... 52
Setup:... 54

Toplevel objects:...54
The “plugin” TLO:... 54
"CONFIG":.. 55
"CONSTANTS":.. 67
"PAGE":.. 67
"FE_DATA":.. 71

"FE_TABLE":.. 71
"FRAMESET":...72
"FRAME":..72
"META":.. 72
"CARRAY":... 73

Content Objects (cObject)........................ 74
PHP-information: ... 74
HTML:... 75
TEXT:..75
COBJ_ARRAY (COA, COA_INT):............................ 76
FILE:... 77
IMAGE:... 77
IMG_RESOURCE:..77
CLEARGIF:...78
CONTENT:... 78
RECORDS:...80
HMENU:..81
CTABLE:...88
OTABLE: ..89
COLUMNS:... 89
HRULER:.. 89
IMGTEXT:... 89
CASE:... 93
LOAD_REGISTER:...94
RESTORE_REGISTER:... 94
FORM:.. 94
SEARCHRESULT:..100
USER and USER_INT:... 101
PHP_SCRIPT:.. 102
PHP_SCRIPT_INT:.. 102
PHP_SCRIPT_EXT:... 103
TEMPLATE:.. 104
MULTIMEDIA:...105
EDITPANEL:...106

GIFBUILDER.. 108
GIFBUILDER:... 108
Objectnames in this section:.................................. 109
NON-GifBuilderObj: ... 115

MENU Objects..116
Common properties:... 116
Common item states for TMENU, GMENU and
IMGMENU series:...118
[menuObj].sectionIndex..119
GMENU:... 120
GMENU_LAYERS / TMENU_LAYERS:................. 121
GMENU_FOLDOUT:.. 124
TMENU:.. 127
TMENUITEM:..128
IMGMENU:... 129
IMGMENUITEM:... 130
JSMENU:.. 131
JSMENUITEM:... 131

media/scripts/ Plugins........................... 132
media/scripts/ in general.. 132
About 'example templates'..................................... 132
fe_adminLib.inc.. 133
tipafriendLib.inc.. 142
plaintextLib.inc..143

Standard Templates................................ 146
static_template... 146
Media.. 146

PHP include scripts.................................147
Introduction.. 147

Including your script... 147
Casestory:.. 149

Storing user-data or session-data.......................... 150
Using the built in "shopping basket".......................151

TSref - 2

index.php... 152
Introduction...152
Submitting data to index.php..................................152

Search:... 152
Emailforms:...153
Database-submit.. 153

Introduction
Warning
This document is a reference - it does not intend to guide you step by step into TYPO3 or TypoScript. So you should know
what you are looking for when coming to this document and then let tutorials do the explanatory work for you.

General information

Case sensitivity:
All names and references in TypoScript are case sensitive! This is very important to notice. That means that:
myObject = HTML
myObject.Value = <BLINK> HTML - code </BLINK>

is not the same as

myObject = html
myObject.value = <BLINK> HTML - code </BLINK>

The latter case will not be recognized as the content-object "HTML". In this manual the case of objects is therefore important

TSref - 3

Data types

Introduction
The values you define to properties in TypoScript is often of a specific format. This table is your guide to these formats.

Eg. if a value is defined as the type "<tag>", you're supposed to supply HTML-code. If it is of the type "resource", it's a
reference to a file from the resource-field in the template. If the type is "GraphicColor" a color-definition is expected and you
should supply a HTML-valid color-code or RGB-values comma-separated.

All this is seen in this table:

Datatype reference
Datatype: Examples: Comment: Default:

<tag> <BODY bgcolor="red">

align right right / left / center
Decides alignment, typically in HTML-tags

left

VHalign Hori.align = right and Vert.align =
center:
r , c

r/c/l , t/c/b
Horizontal (right, center, left) , Vertical align (top /
center / bottom)

l , t

resource From the resourcefield:
toplogo*.gif

Reference to filesystem:
fileadmin/picture.gif

1) A reference to a file from the resource-field in the
template.
You can write the exact filename or you can include
an asterisk (*) as wildcard.
It's recommended to include a "*" before the
fileextension (see example to the left). This will
ensure that the file is still referenced correct even if
the template is copied and the file will have it's name
prepended with numbers!!
2) If the value contains a "/" it's expected to be a
reference (absolute or relative) to a file on the file-
system instead of the resource-field. No support for
wildcards.

imgResource Here "file" is an imgResource:
file = toplogo*.gif
file.width = 200

GIFBUILDER:
file = GIFBUILDER
file {
 ... (GIFBUILDER-properties
here)
}

1) A "resource" (see above) + imgResource-
properties (see example to the left and object-
reference below)
Filetypes can be anything among the allowed types
defined in the configuration variable
$TYPO3_CONF_VARS["GFX"]["imagefile_ext"]
(localconf.php). Standard is
pdf,gif,jpg,jpeg,tif,bmp,ai,pcx,tga,png.

2) GIFBUILDER-object

HTML-code Some text in bold pure HTML-code

target _top
_blank
content

target in <A>-tag.
This is normally the same value as the name of the
root-level object that defines the frame.

imageExtension jpg
web (gif or jpg ..)

Image extensions can be anything among the allowed
types defined in the global variable
$TYPO3_CONF_VARS["GFX"]["imagefile_ext"]
(localconf.php). Standard is
pdf,gif,jpg,jpeg,tif,bmp,ai,pcx,tga,png.
The value "web" is special. This will just ensure that
an image is converted to a web imageformat (gif or
jpg) if it happens not to be already!

degree -90 to 90, integers

posint / int+ Positive integer

int integer
(sometimes used generally though another type
would have been more appropriate, like "pixels")

str / string / value string.
(sometimes used generally though another type
would have been more appropriate, like "align")

boolean 1 boolean
non-empty strings (but not zero) are "true"

TSref - 4

Datatype: Examples: Comment: Default:
rotation integer, degrees from 0 - 360

x,y,w,h 10,10,5,5 x,y is the offset from the upper left corner.
w,h is the width and height

HTML-color red
#ffeecc

HTML-color codes:

Black = "#000000"
Silver = "#C0C0C0"
Gray = "#808080"
White = "#FFFFFF"
Maroon = "#800000"
Red = "#FF0000"
Purple = "#800080"
Fuchsia = "#FF00FF"
Green = "#008000"
Lime = "#00FF00"
Olive = "#808000"
Yellow = "#FFFF00"
Navy = "#000080"
Blue = "#0000FF"
Teal = "#008080"
Aqua = "#00FFFF"

GraphicColor red (HTML-color)
#ffeecc (HTML-color)
255,0,255 (RGB-integers)

Extra:
red : *0.8 ("red" is darkend by factor
0.8)
#ffeecc : +16 ("ffeecc" is going to
#fffedc because 16 is added)

The color can be given as HTML-colors or as a
comma-seperated list of RGB-values (integers)
You can add an extra parameter that will modify the
color mathematically:
Syntax:
[colordef] : [modifier]
where modifier can be and integer which is
added/subtracted to the three RGB-channels or a
floatingpoint with an "*" before, which will then
multiply the values with that factor.

page_id this
34

A page id (int) or "this" (=current page id)

pixels 345 pixel-distance

list item,item2,item3 list of values

margins This sets leftmargin to 10 and bottom-
margin to 5. Top and right is not set
(zero)
10,0,0,5

l,t,r,b
left, top, right, bottom

wrap This will cause the value to be wrapped
in a font-tag coloring the value red:
 |

<...> | </...>
Used to wrap something. The part on the left and
right of the vertical line is placed on the left and right
side of the value.

linkWrap This will make a link to the root-level of
a website:
 |

<.. {x}.> | </...>
{x}; x is an integer (0-9) and points to a key in the
PHP-array rootLine. The key is equal to the level the
current page is on measured relatively to the root of
the website.
If the key exists the uid of the level that key pointed to
is inserted instead of {x}.
Thus we can insert page_ids from previous levels.

case upper "upper" / "lower"
Case-conversion

space 5 | 5 "before | after"
Used for content and sets space "before | after".

TSref - 5

Datatype: Examples: Comment: Default:
date-conf d-m-y (dd-mm-yy format) See PHP function Date()!

a - "am" or "pm"
A - "AM" or "PM"
d - day of the month, numeric, 2 digits (with leading
zeros)
D - day of the week, textual, 3 letters; i.e. "Fri"
F - month, textual, long; i.e. "January"
h - hour, numeric, 12 hour format
H - hour, numeric, 24 hour format
i - minutes, numeric
j - day of the month, numeric, without leading zeros
l (lowercase 'L') - day of the week, textual, long; i.e.
"Friday"
m - month, numeric
M - month, textual, 3 letters; i.e. "Jan"
s - seconds, numeric
S - English ordinal suffix, textual, 2 characters; i.e.
"th", "nd"
U - seconds since the epoch
Y - year, numeric, 4 digits
w - day of the week, numeric, 0 represents Sunday
y - year, numeric, 2 digits
z - day of the year, numeric; i.e. "299"

TSref - 6

Datatype: Examples: Comment: Default:
strftime-conf Date "DD-MM-YY" =

%e:%m:%y
Time "HH:MM:SS" =
%H:%M:%S
or just
%T

%a - abbreviated weekday name according to the
current locale
%A - full weekday name according to the current
locale
%b - abbreviated month name according to the
current locale
%B - full month name according to the current locale
%c - preferred date and time representation for the
current locale
%C - century number (the year divided by 100 and
truncated to an integer, range 00 to 99)
%d - day of the month as a decimal number (range
00 to 31)
%D - same as %m/%d/%y
%e - day of the month as a decimal number, a
single digit is preceded by a space (range ' 1' to
'31')
%h - same as %b
%H - hour as a decimal number using a 24-hour
clock (range 00 to 23)
%I - hour as a decimal number using a 12-hour clock
(range 01 to 12)
%j - day of the year as a decimal number (range 001
to 366)
%m - month as a decimal number (range 01 to 12)
%M - minute as a decimal number
%n - newline character
%p - either `am' or `pm' according to the given time
value, or the corresponding strings for the current
locale
%r - time in a.m. and p.m. notation
%R - time in 24 hour notation
%S - second as a decimal number
%t - tab character
%T - current time, equal to %H:%M:%S
%u - weekday as a decimal number [1,7], with 1
representing Monday
%U - week number of the current year as a decimal
number, starting with the first Sunday as the first day
of the first week
%V - The ISO 8601:1988 week number of the current
year as a decimal number, range 01 to 53, where
week 1 is the first week that has at least 4 days in the
current year, and with Monday as the first day of the
week.
%W - week number of the current year as a decimal
number, starting with the first Monday as the first day
of the first week
%w - day of the week as a decimal, Sunday being 0
%x - preferred date representation for the current
locale without the time
%X - preferred time representation for the current
locale without the date
%y - year as a decimal number without a century
(range 00 to 99)
%Y - year as a decimal number including the century
%Z - time zone or name or abbreviation
%% - a literal `%' character

UNIX-time Seconds to 07/04 2000 23:58:
955144722

Seconds since 1/1 1970...

path fileadmin/stuff/ path relative to the directory from which we operate.

<tag>-data Example:
<frameset>-data: row
could be '150,*'

<tag>-params Example:
<frameset>-params
could be 'border="0" framespacing="0"'

TSref - 7

Datatype: Examples: Comment: Default:
getText get content from the $cObj->data-array

[header]:
= field : header
get content from the $cObj-
>parameters-array[color]:
= parameters : color
get content from the $GLOBALS
["TSFE"]->register[color]:
= register : color
get the title of the page on the first
level of the rootline:
= leveltitle : 1
get the title of the page on the level
right below the current page AND if
that is not present, walt to the bottom
of the rootline until there's a title:
= leveltitle : -2 , slide
get the id of the root-page of the
website (level zero)
= leveluid : 0
Gets the value of the user defined field
“user_myExtField” in the root line
(requires additional config in
TYPO3_CONF_VARS to include field!)
= levelfield : -1 , user_myExtField ,
slide
get the env var HTTP_REFERER:
= getenv : HTTP_REFERER
get the env variable
$HTTP_COOKIE_VARS
[some_cookie]:
= global : HTTP_COOKIE_VARS |
some_cookie
get the current time formatted dd-mm-
yy:
= date : d-m-y
get the current page-title:
= page : title
get the current value:
= current : 1
get input value from query string,
(&stuff=)
= GPvar : stuff
get input value from query string,
(&stuff[key]=)
= GPvar : stuff | key
get the current id
= TSFE : id
get the value of the header of record
with uid 234 from table tt_content:
= DB : tt_content:234:header
Gets the title of the page right before
the start of the current website:
= fullRootLine : -1, title
Returns localized label for logout
button
=
LLL:EXT:css_styled_content/pi1/loc
allang.x:login.logout
Outputs the current root-line visually in
HTML:
= debug : rootLine
Gets path to file relative file to siteroot
possibly placed in an extension:
path:EXT:ie7/js/ie7-standard.js

This returns a value from somewhere in PHP-array,
defined by the type. The syntax is "type : pointer"

field : [fieldname from the current $cObj->data-array
in the cObj.]
As default the $cObj->data-array is $GLOBALS
["TSFE"]->page (record of the current page!)
In TMENU: $cObj->data is set to the page-record for
each menuitem.
In CONTENT/RECORDS $cObj->data is set to the
actual record
In GIFBUILDER $cObj->data is set to the data
GIFBUILDER is supplied with.
parameters : [fieldname from the current $cObj-
>parameters-array in the cObj.]
See ->parseFunc!
register : [fieldname from the $GLOBALS["TSFE"]-
>register]
See cObject "LOAD_REGISTER"
leveltitle, leveluid, levelmedia: [levelTitle, uid or
media in rootLine, 0- , negative = from behind, “ ,
slide” parameter forces a walk to the bottom of the
rootline until there's a “true” value to return. Useful
with levelmedia.]
levelfield: Like “leveltitle” et al. but where the second
parameter is the rootLine field you want to fetch.
Syntax: [pointer, integer], [fieldname], [“slide”]
global : [GLOBAL-var, split with | if you want to get
from an array! DEPRECATED, use GPvar, TSFE or
getenv]
date : [date-conf]
page : [current page record]
current : 1 (gets 'current' value)
level : 1 (gets the rootline level of the current page)
GPvar: Value from GET or POST method. Use this
instead of global
TSFE: Value from TSFE global main object
getenv: Value from environment vars
getIndpEnv: Value from t3lib_div::getIndpEnv()
DB: Value from database, syntax is [tablename] :
[uid] : [field]. Any record from a table in TCA can be
selected here. Only marked-deleted records does not
return a value here.
fullRootLine : This gets the title “1. page before” in a
page tree like the one below provided we are are the
page “Here you are!” (or “Site root”) and this
TypoScript is in the template with root at “Site root”.
Red numbers indicate what values of keynumber
would point to:
- Page tree root -2
 |- 1. page before -1
 |- Site root (root template here!) 0
 |- Here you are! 1

LLL: Reference to a locallang (php or xml) label.
Reference consists of [fileref]:[labelkey]
path: path to a file, possibly placed in an extension,
returns empty if the file doesn't exist.
cObj: [internal variable from list:
“parentRecordNumber”]: For CONTENT and
RECORDS cObjects that are returned
by a select query, this returns the row number
(1,2,3,...) of the current cObject record.
debug: Returns HTML formated content of PHP
variable defined by keyword. Available keys are
“rootLine”, “fullRootLine”, “data”

Getting array/object elements.
You can fetch the value of an array/object by splitting
it with a pipe “|”.
Example: TSFE:fe_user|user|username
Getting more values.
By separating the value of getText with "//" (double
slash) you let getText fetch the first value. If it
appears empty ("" or zero) the next value is fetched
and so on. Example:
= field:header // field:title // field:uid
This gets "title" if "header" is empty. If "title" is also
empty it gets field "uid"
fullRootLine :

TSref - 8

Datatype: Examples: Comment: Default:
dir returns a list of all pdf, gif and jpf-filer

from fileadmin/files/ sorted by their
name reversely and with the full path
(with "fileadmin/files/" prepended)
fileadmin/files/ | pdf,gif,jpg | name | r
| true

[path relative to the webroot of the site] | [list of valid
extensions] | [sorting: name, size, ext, date] |
[reverse: "r"] | [return full path: boolean
Files matching is returned in a comma-separated
string.
Note:
The value of config-option "lockFilePath" must equal
the first part of the path. Thereby the path is locked to
that folder.

function-name Function:
user_reverseString
Method in class:
user_stringReversing-
>reverseString

Indicates a function or method in a class to call. See
more information at the USER cObject.
Depending on implementation the class or function
name (but not the method name) should probably be
prefixed with “user_”. This can be changed in the
TYPO3_CONF_VARS config though. Also the
function / method is normally called with 2
parameters, typ. $conf (TS config) and $content
(some content to be processed and returned)
Also if you call a method in a class, it is checked
(when using the USER/USER_INT objects) whether a
class with the same name, but prefixed with “ux_” is
present and if so, this class is instantiated instead.
See “Inside TYPO3” document for more information
on extending the classes in TYPO3!

[tsref:(datatypes)]

Data types: Object types
This is some "data-types" that might be mentioned and valid values are shown here below:

Datatype: Examples: Comment: Default:
cObject HTML / TEXT / IMAGE

(see "Content Objects" section also called
"cObjects")

frameObj FRAMESET / FRAME

menuObj GMENU / TMENU / IMGMENU / JSMENU

.sectionIndex

.alternativeSortingFields
(see the menu-object pages later)

GifBuilderObj TEXT / SHADOW / OUTLINE / EMBOSS /
BOX / IMAGE / EFFECT

TSref - 9

Objects and properties

Introduction
Reference to objects:
Whenever you see ->[objectname] in the tables it means that the property is an object "objectname" with properties from
object objectname. You don't need to define the objecttype.

Calculating values (+calc):
Sometimes a datatype is set to "something +calc". "+calc" indicates that the value is calculated with "+-/*". Be aware that
the operators has no "weight". The calculation is done in the order of the operators.

Example:
45 + 34 * 2 = 158 (which is the same as this is ordinary arithmetic: (45+34)*2=158)

"... /stdWrap":
When a datatype is set to "type /stdWrap" it means that the value is parsed through the stdWrap function with the properties
of the value as parameters.

Example:
pixels /stdWrap: Here the value should be set to pixels and parsed through stdWrap.

In a real application we could do like this:
.pixels.field = imagewidth
.pixels.intval = 1

This example imports the value from the field "imagewidht" of the current $cObj->data-array. But we don't trust the result to
be an integer so we parse it through the the intval()-function.

optionSplit:
optionSplit is a very tricky function. It's primarily used in the menu-objects where you define properties of a whole bunch of
items at once. Here the value of properties would be parsed through this function an depending on your setup you could eg.
let the last menu-item appear with another color than the other.

The syntax is like this:

|*| - splits the value in parts first, middle, last.

|| - splits each of the first, middle, last in subparts

1. The priority is last, first, middle.

2. If the middle-value is empty (""), the last part of the first-value is repeated.

3. If the first- or middle value is empty, the first part of the last-value is repeated before the last value

4. The middle value is rotated.

ex: first1 || first2 |*| middle1 || middle2 || middle3 |*| last1 || last 2

Examples:
This is very complex and you might think that this has gone too far. But it's actually usefull.

Now consider a menu with five items:

Introduction
Who are we?
Business
Contact
Links

... and a configuration like this (taken from the example-code on the first pages):

TSref - 10

temp.topmenu.1.NO {
 backColor = red

}

If you look in this reference (see later) at the linkWrap-property of the GMENU-object, you'll discover that all properties of .
NO is parse through optionSplit. This means that before the individual menuitems are generated, the properties are split by
this function. Now lets look at some examples:

Subparts ||

Example:
All items take on the same value. Only the first-part is defined and thus it's repeated to all elements
TS: backColor = red

Introduction (red)
Who are we? (red)
Business (red)
Contact (red)
Links (red)

Example:
Here the first-part is split into subparts. The third subpart is repeated because the menu has five items.
TS: backColor = red || yellow || green

Introduction (red) first, subpart 1
Who are we? (yellow) first, subpart 2
Business (green) first, subpart 3
Contact (green) first, subpart 3 (repeated)
Links (green) first, subpart 3 (repeated)

Parts |*|

Example:
Now a middle-value is also defined ("white"). This means that after the first two menu-items the middle-value is used.
TS: backColor = red || yellow |*| white

Introduction (red) first, subpart 1
Who are we? (yellow) first, subpart 2
Business (white) middle
Contact (white) middle
Links (white) middle

Example:
Now a last-value is also defined ("blue || olive"). This means that after the first two menu-items the middle-value is used.
TS: backColor = red || yellow |*| white |*| blue || olive

Introduction (red) first, subpart 1
Who are we? (yellow) first, subpart 2
Business (white) middle
Contact (blue) last, subpart 1
Links (olive) last, subpart 2

... and if we expand the menu a bit (middle-value is repeated!)

Introduction (red) first, subpart 1
Who are we? (yellow) first, subpart 2
Business (white) middle
.... (white) middle
.... (white) middle
.... (white) middle
.... (white) middle

TSref - 11

Contact (blue) last, subpart 1
Links (olive) last, subpart 2

... and if we contract the menu to only four items (the middle-value is discarted as it's priority is the least)

Introduction (red) first, subpart 1
Who are we? (yellow) first, subpart 2
Contact (blue) last, subpart 1
Links (olive) last, subpart 2

... and if we contract the menu to only 3 items (the last subpart of the first-value is discarted as it's priority is less than the
last-value)

Introduction (red) first, subpart 1
Contact (blue) last, subpart 1
Links (olive) last, subpart 2

"1: The priority is last, first, middle"
Now the last two examples showed that the last-value has the highest priority, then the first-value and then the middle-value.

"2: If the middle-value is empty, the last part of the first-value is repeated"

Example:
The middle-value is left out now. Then subpart 2 of the first value is repeated. Please observe that no space must exist
between the two |*||*|!
TS: backColor = red || yellow |*||*| blue || olive

Introduction (red) first, subpart 1
Who are we? (yellow) first, subpart 2
Business (yellow) first, subpart 2 (repeated)
Contact (blue) last, subpart 1
Links (olive) last, subpart 2

"3: If the first- or middle value is empty, the first part of the last-value is repeated before the
last value"

Example:
The middle-value and first-value is left out now. Then the subpart 1 of the last value is repeated. Please observe that no
space must exist between the two |*||*|!
TS: backColor = |*||*| blue || olive

Introduction (blue) last, subpart 1 (repeated)
Who are we? (blue) last, subpart 1 (repeated)
Business (blue) last, subpart 1 (repeated)
Contact (blue) last, subpart 1
Links (olive) last, subpart 2

"4: The middle value is rotated"

Example:
TS: backColor = red |*| yellow || green |*|

Introduction (red) first
Who are we? (yellow) middle, subpart 1
Business (green) middle, subpart 2
.... (yellow) middle, subpart 1
.... (green) middle, subpart 2
.... (yellow) middle, subpart 1
.... (green) middle, subpart 2
Contact (yellow) middle, subpart 1

TSref - 12

Links (green) middle, subpart 2

TSref - 13

Conditions

Condition reference:
General notes:
Values are normally trimmed for whitespaces before comparison.

You may combine several conditions with two operators: && (and), || (or)

Alternatively you may use "AND" and "OR" instead of "&&" and "||". The AND operator has always higher precedence over
OR. If no operator has been specified, it will default to OR.

Examples:
This condition will match if the visitor opens the website with Internet Explorer on Windows (but not on Mac)

[browser = msie] && [system = win]

This will match with either Opera or Netscape browsers
[browser = opera] || [browser = netscape]

This will match with either Internet Explorer or Netscape. In case of Netscape, the version must be above 4.
[browser = msie] || [browser = netscape] && [version => 4]

browser

Syntax:
[browser = browser1,browser2,...]

Values and comparison:
Browser: Identification:

Microsoft Internet Explorer msie

Netscape Communicator netscape

Lynx lynx

Opera opera

PHP fopen php

AvantGo (www.avantgo.com) avantgo

Adobe Acrobat WebCapture acrobat

IBrowse (amiga-browser) ibrowse

Teleport Pro teleport

?? (if "mozilla" is not in useragent) unknown

Each value is compared with the ($browsername.$browserversion, eg. "netscape4.72") in a strstr().

So if the value is "netscape" or just "scape" or "net" all netscape browsers will match.

If the value is "netscape4" all netscape 4.xx browsers will match.

If any value in the list matches the current browser, the condition returns true.

Examples:
This will match with netscape and opera-browsers

[browser = netscape, opera]

TSref - 14

version

Syntax:
[version = value1, >value2, =value3, <value4, ...]

Comparison:
values are floating-point numbers with "." as the decimal separator.

The values may be preceeded by three operators:

Operator: Function:
 [nothing] The value must be part of the beginning of the version as a string. This means that if the

version is "4.72" and the value is "4" or "4.7" it matches. But "4.73" does not match.
Example from syntax: "value1"

= The value must match exactly. Version "4.72" matches only with a value of "4.72"

> The version must be greather than the value

< The version must be less than the value

Examples:
This matches with exactly "4.03" browsers

[version= =4.03]

This matches with all 4+ browsers and netscape 3 browsers
[version= >4][browser= netscape3]

system

Syntax:
[system= system1,system2]

Values and comparison:
System: Identification:

Linux linux

SGI / IRIX unix_sgi

SunOS unix_sun

HP-UX unix_hp

Macintosh mac

Windows 3.11 win311

Windows NT winNT

Windows 95 win95

Windows 98 win98

Amiga amiga
Values are strings an a match happens if one of these strings is the first part of the system-identification.

Fx. if the value is "win9" this will match with "win95" and "win98" systems.

Examples:
This will match with windows and mac -systems only

[system= win,mac]

device

Syntax:
[device= device1, device2]

TSref - 15

Values and comparison:
Device: Identification:

HandHeld pda

WAP phones wap

Grabbers: grabber

Indexing robots: robot
Values are strings an a match happens if one of these strings equals the type of device

Examples:
This will match WAP-phones and PDA's

[device= wap, pda]

useragent

Syntax:
[useragent= agent]

Values and comparison:
This is a direct match on the useragent string from getenv(“HTTP_USER_AGENT”)

You have the options of putting a "*" at the beginning and/or end of the value agent thereby matching with this wildcard!

Examples:
If the HTTP_USER_AGENT is "Mozilla/4.0 (compatible; Lotus-Notes/5.0; Windows-NT)" this will match with it:

[useragent = Mozilla/4.0 (compatible; Lotus-Notes/5.0; Windows-NT)]

This will also match with it:
[useragent = *Lotus-Notes*]

... but this will also match with a useragent like this: "Lotus-Notes/4.5 (Windows-NT)"

A short list of user-agent strings and a proper match:

HTTP_USER_AGENT: Agent description: Matching condition:
Nokia7110/1.0+(04.77) Nokia 7110 WAP phone [useragent= Nokia7110*]

Lotus-Notes/4.5 (Windows-NT) Lotus-Notes browser [useragent= Lotus-Notes*]

Mozilla/3.0 (compatible; AvantGo 3.2) AvantGo browser [useragent= *AvantGo*]

Mozilla/3.0 (compatible; WebCapture 1.0; Auto; Windows) Adobe Acrobat 4.0 [useragent= *WebCapture*]

WAP-agents:
This is some of the known WAP agents:

TSref - 16

HTTP_USER_AGENT HTTP_USER_AGENT (continued)
ALAV UP/4.0.7
Alcatel-BE3/1.0 UP/4.0.6c
AUR PALM WAPPER
Device V1.12
EricssonR320/R1A
fetchpage.cgi/0.53
Java1.1.8
Java1.2.2
m-crawler/1.0 WAP
Materna-WAPPreview/1.1.3
MC218 2.0 WAP1.1
Mitsu/1.1.A
MOT-CB/0.0.19 UP/4.0.5j
MOT-CB/0.0.21 UP/4.0.5m
Nokia-WAP-Toolkit/1.2
Nokia-WAP-Toolkit/1.3beta
Nokia7110/1.0 ()
Nokia7110/1.0 (04.67)
Nokia7110/1.0 (04.67)
Nokia7110/1.0 (04.69)
Nokia7110/1.0 (04.70)
Nokia7110/1.0 (04.71)
Nokia7110/1.0 (04.73)
Nokia7110/1.0 (04.74)
Nokia7110/1.0 (04.76)
Nokia7110/1.0 (04.77)
Nokia7110/1.0 (04.80)
Nokia7110/1.0 (30.05)
Nokia7110/1.0

PLM's WapBrowser
QWAPPER/1.0
R380 2.0 WAP1.1
SIE-IC35/1.0
SIE-P35/1.0 UP/4.1.2a
SIE-P35/1.0 UP/4.1.2a
UP.Browser/3.01-IG01
UP.Browser/3.01-QC31
UP.Browser/3.02-MC01
UP.Browser/3.02-SY01
UP.Browser/3.1-UPG1
UP.Browser/4.1.2a-XXXX
UPG1 UP/4.0.7
Wapalizer/1.0
Wapalizer/1.1
WapIDE-SDK/2.0; (R320s (Arial))
WAPJAG Virtual WAP
WAPJAG Virtual WAP
WAPman Version 1.1 beta:Build W2000020401
WAPman Version 1.1
Waptor 1.0
WapView 0.00
WapView 0.20371
WapView 0.28
WapView 0.37
WapView 0.46
WapView 0.47
WinWAP 2.2 WML 1.1
wmlb
YourWap/0.91
YourWap/1.16
Zetor

language

Syntax:
[language = lang1, lang2, ...]

Comparison:
The values must be a straight match with the value of getenv(“HTTP_ACCEPT_LANGUAGE”) from PHP. Alternatively, if the
value is wrapped in “*” (eg. “*en-us*”) then it will split all languages found in the HTTP_ACCEPT_LANGUAGE string and try
to match the value with any of those parts of the string. Such a string normally looks like “de,en-us;q=0.7,en;q=0.3” and “*en-
us*” would match with this string.

IP

Syntax:
[IP = ipaddress1, ipaddress2, ...]

Comparison:
The values are compared with the getenv(“REMOTE_ADDR”) from PHP.

You may include "*" instead of one of the parts in values. You may also list the first one, two or three parts and only they will
be tested.

Examples:
These examples will match any IP-address starting with "123":

[IP = 123.*.*.*]
or

[IP = 123]

This examples will match any IP-address ending with "123" or being "192.168.1.34":
[IP = *.*.*.123][IP = 192.168.1.34]

TSref - 17

hostname

Syntax:
[hostname = hostname1, hostname2, ...]

Comparison:
The values are compared with the fully qualiteid hostname of getenv(“REMOTE_ADDR”) retrieved by PHP.

Value is comma-list of domain names to match with. *-wildcard allowed but cannot be part of a string, so it must match the
full host name (eg. myhost.*.com => correct, myhost.*domain.com => wrong)

hour

Syntax:
[hour = hour1, >hour2, <hour3, ...]

Comparison:
The values in floating point are compared with the current hour (24-hours-format) of the server.

Operator: Function:
[nothing] Requires exact match

> The hour must be greather than the value

< The hour must be less than the value

minute
See "Hour" above. Same syntax!

Syntax:
[minute = ...]

Comparison:
Minute of hour, 0-59

dayofweek
See "Hour" above. Same syntax!

Syntax:
[dayofweek = ...]

Comparison:
Day of week, starting with sunday being 0 and saturday being 6

dayofmonth
See "Hour" above. Same syntax!

Syntax:
[dayofmonth = ...]

Comparison:
Day of month, 1-31

TSref - 18

month
See "Hour" above. Same syntax!

Syntax:
[month = ...]

Comparison:
Month, january being 1 and december being 12

usergroup

Syntax:
[usergroup = group1-uid, group2-uid, ...]

Comparison:
The comparison can only return true if the grouplist is not empty (global var "gr_list").

The values must either exists in the grouplist OR the value must be a "*".

Example:
This matches all logins

[usergroup = *]

This matches logins from users members of groups with uid's 1 and/or 2:
[usergroup = 1,2]

loginUser

Syntax:
[loginUser = fe_users-uid, fe_users-uid, ...]

Comparison:
Matches on the uid of a logged in fe_user. Works like 'usergroup' above including the * wildcard to select ANY user.

Example:
This matches any login (use this instead of “[usergroup = *]” to match when a user is logged in!):

[loginUser = *]

treeLevel

Syntax:
[treeLevel = levelnumber, levelnumber, ...]

Comparison:
This checks if the last element of the rootLine is at a level corresponding to one of the figures in "treeLevel". Level = 0 is the
"root" of a website. Level=1 is the first menuen

Example:
This changes something with the template, if the page viewed is on level either level 0 (basic) or on level 2

[treeLevel = 0,2]

TSref - 19

PIDinRootline

Syntax:
[PIDinRootline = pages-uid, pages-uid, ...]

Comparison:
This checks if one of the figures in "treeLevel" is a PID (pages-uid) in the rootline

Example:
This changes something with the template, if the page viewed is or is a subpage to page 34 or page 36

[PIDinRootline = 34,36]

PIDupinRootline

Syntax:
[PIDupinRootline = pages-uid, pages-uid, ...]

Comparison:
Do the same as PIDinRootline, except the current page-uid is excluded from check.

compatVersion

Syntax:
[compatVersion = x.y.z]

Comparison:
Require a minimum compatibility version. This version is not necessary equal with the TYPO3 version, it is a configurable
value that can be changed in the Upgrade Wizard of the Install Tool.

“compatVersion” is especially useful if you want to provide new default settings but keep the backwards compatibility for old
versions of TYPO3.

globalVars:

Syntax:
[globalVar= var1=value, var2<value2, var3>value3, ...]

Comparison:
The values in floating point are compared with the global var "var1" from above.

Operator: Function:
[nothing] Requires exact match

> The var must be greather than the value

< The var must be less than the value

globalString:

Syntax:
[globalString = var1=value, var2= *value2, var3= *value3*, ...]

Comparison:
This is a direct match on global strings.

You have the options of putting a "*" as a wildcard or using a PCRE style regular expression (must be wrapped in "/") to the

TSref - 20

value.

Examples:
If the HTTP_HOST is "www.typo3.com" this will match with:

[globalString = HTTP_HOST=www.typo3.com]

This will also match with it:
[globalString = HTTP_HOST= *typo3.com]

... but this will also match with a HTTP_HOST like this: "demo.typo3.com"

IMPORTANT NOTE ON globalVar and globalString:
You can use values from global arrays and objects by deviding the var-name with a "|" (vertical line).

Examples: The global var $HTTP_POST_VARS["key"]["levels"] would be retrieved by "HTTP_POST_VARS|key|levels"

Also note that it's recommended to program your scripts in compliance with the php.ini-optimized settings. Please see that
file (from your distribution) for details.

Caring about this means that you would get values like HTTP_HOST by getenv(), you would retrieve GET/POST values with
t3lib_div::GPvar(). Finally a lot of values from the TSFE object are useful. In order to get those values for comparison with
“globalVar” and “globalString” conditions, you prefix that varname with either "IENV"/“ENV:” , “GP:”, “TSFE:” or “LIT:”
respectively. Still the “|” divider may be used to separate keys in arrays and/or objects. “LIT” means “literal” and the string
after “:” is trimmed and returned as the value (without being divided by “|” or anything)

Notice: Using the "IENV:" prefix is highly recommended to get server/environment variables which are system independant.
Basically this will call and return the value from t3lib_div::getIndpEnv() function. With "ENV:" you get the raw output from
getenv() which is NOT always the same on all systems!

Examples:
This will match with a url like “...&print=1”

[globalVar = GP:print > 0]

This will match with a remote-addr begining with “192.168.”
[globalString = IENV:REMOTE_ADDR = 192.168.*]

This will match with the page-id being higher than 10:
[globalVar = TSFE:id > 10]

This will match with the pages having the layout field set to “Layout 1”:
[globalVar = TSFE:page|layout = 1]

This will match with the user whose username is “test”:
[globalString = TSFE:fe_user|user|username = test]

If the constant {$constant_to_turnSomethingOn} is “1” then this matches:
[globalVar = LIT:1 = {$constant_to_turnSomethingOn}]

userFunc:

Syntax:
[userFunc = user_match(checkLocalIP)]

Comparison:
This call the function “user_match” with the first parameter “checkLocalIP”. You write that function. You decide what it
checks. Function result is evaluated as true/false.

Example:
Put this function in your localconf.php file:

TSref - 21

function user_match($cmd) {
switch($cmd) {

case "checkLocalIP":
if (strstr(getenv("REMOTE_ADDR"),"192.168")) {

return true;
}

break;
case "checkSomethingElse":

//
break;

}
}

This condition will return true if the remote address contains “192.168” - which is what your function finds out.
[userFunc = user_match(checkLocalIP)]

TSref - 22

Functions:
stdWrap:
This function is often added as properties to values in TypoScript.

Example with the content-object, "HTML":
10 = HTML
10.value = some text
10.value.case = upper

Here the content of the object "10" is uppercased before it's returned.

stdWrap properties are executed in the order they appear in the table below. If you want to study this further please refer to
typo3/sysext/cms/tslib/class.tslib_content.php, function stdWrap().

Content-supplying properties of stdWrap:

The properties in this table is parsed in the listed order. The properties "data", "field", "current", "cObject" (in that order!) are
special as they are used to import content from variables or arrays. The above example could be rewritten to this:
10 = HTML
10.value = some text
10.value.case = upper
10.value.field = header

Now the line "10.value = some text" is obsolete, because the whole value is "imported" from the field called "header" from the
$cObj->data-array.

Property: Data type: Description: Default:

Get data:
setContentToCurrent boolean Sets the current value to the incoming content of the function.

setCurrent string /stdWrap Sets the "current"-value. This is normally set from some outside routine,
so be careful with this. But it might be handy to do this

lang Array of language
keys

This is used to define optional language specific values.
If the global language key set by the ->config property .language is found
in this array, then this value is used instead of the default input value to
stdWrap.

Example:
config.language = de
page.10 = TEXT
page.10.value = I am a Berliner!
page.10.lang.de = Ich bin ein Berliner!

Output will be “Ich bin...” instead of “I am...”

data getText

field fieldname Sets the content to the value $cObj->data[field]

Example: Set content to the value of field "title": ".field = title"
$cObj->data changes. See the description for the data type "getText"/field!

Note: You can also divide fieldnames by “//”. Say, you set “nav_title // title”
as the value, then the content from the field nav_title will be returned
unless it is a blank string, in which case the title-field's value is returned.

current boolean Sets the content to the "current"-value (see ->split)

cObject cObject Loads content from a content-object

numRows ->numRows Returns the number of rows resulting from the select

filelist dir /stdWrap Reads a directory and returns a list of files.
The value is exploded by "|" into parameters:
1: The path
2: comma-list of allowed extensions (no spaces between); if empty all
extensions goes.
3: sorting: name, size, ext, date, mdate (modification date)
4: reverse: Set to "r" if you want a reversed sorting
5: fullpath_flag: If set, the filelist is returned with complete paths, and not
just the filename

TSref - 23

Property: Data type: Description: Default:
preUserFunc function-name Calling a PHP-function or method in a class, passing the current content to

the function as first parameter and any properties as second parameter.
See .postUserFunc

Override / Conditions:
override string /stdWrap if "override" returns something else than "" or zero (trimmed), the content

is loaded with this!

preIfEmptyListNum (as "listNum"
below)

(as "listNum" below)

ifEmpty string /stdWrap if the content is empty (trimmed) at this point, the content is loaded with
"ifEmpty". Zeros are treated as empty values!

ifBlank string /stdWrap Same as "ifEmpty" but the check is done using strlen().

listNum int
+calc
+"last"

Explodes the content with "," (comma) and the content is set to the item
[value].

Special keyword: "last" is set to the last element of the array!

.splitChar (string):
Defines the string used to explode the value. If splitChar is an integer, the
character with that number is used (eg. "10" to split lines...).
Default: “," (comma)
.stdWrap (stdWrap properties):
stdWrap properties of the listNum...

Examples:
We have a value of "item 1, item 2, item 3, item 4":
This would return "item 3":
.listNum = last - 1

trim PHP-function trim(); Removes whitespace around value

stdWrap ->stdWrap Recursive call to stdWrap function

required boolean This flag requires the content to be set to some value after any content-
import and treatment that might have happend now (data, field, current,
listNum, trim). Zero's is NOT regarded as empty! Use "if" instead!
If the content i empty, "" is returned immediately.

if ->if If the if-object returns false, stdWrap returns "" immediately

fieldRequired fieldname value in this field MUST be set

Parse data:
csConv string Convert the charset of the string from the charset given as value to the

current rendering charset of the frontend (renderCharset).

parseFunc object path
reference /
->parseFunc

Processing instructions for the content.
Notice: If you enter a string as value this will be taken as a reference to an
object path globally in the TypoScript object tree. This will be the basis
configuration for parseFunc merged with any properties you add here. It
works exactly like references does for content elements.

Example:
parseFunc = < lib.parseFunc_RTE
parseFunc.tags.myTag = TEXT
parseFunc.tags.myTag.value = This will be inserted when <myTag> is
found!

HTMLparser boolean /
->HTMLparser

This object allows you to parse the HTML-content and make all kinds of
advanced filterings on the content.
Value must be set and properties are those of ->HTMLparser.
(See adminguide for ->HTMLparser options)

split ->split

TSref - 24

Property: Data type: Description: Default:
prioriCalc boolean Calculation of the value using operators -+*/%^ plus respects priority to +

and - operators and parenthesis levels ().
. (period) is decimal delimiter.
Returns a doublevalue.
If .prioriCalc is set to “intval” an integer is returned.
There is no errorchecking and division by zero or other invalid values may
generate strange results. Also you use a proper syntax because future
modifications to the function used may allow for more operators and
features.

Examples:
100%7 = 2
-5*-4 = 20
+6^2 = 36
6 ^(1+1) = 36
-5*-4+6^2-100%7 = 54
-5 * (-4+6) ^ 2 - 100%7 = 98
-5 * ((-4+6) ^ 2) - 100%7 = -22

char int Content is set to the chr(value).
PHP: $content=chr(intval($conf["char"]);

intval boolean PHP function intval(); Returns an integer.
PHP: $content=intval($content);

date date-conf The content should be data-type "UNIX-time". Returns the content
formatted as a date.
$content=Date($conf["date"], $content);

Example where a timestamp is imported:
.value.field = tstamp
.value.date =

strftime strftime-conf Exactly like "date" above. See the PHP-manual (strftime) for the codes, or
datatype "strftime-conf".
This formatting is useful if the locale is set in advance in the CONFIG-
object. See this.

Properties:
.charset : Can be set to the charset of the output string if you need to
convert it to renderCharset. Default is to take the intelligently guessed
charset from t3lib_cs.

age boolean or string If enabled with a "1" (number, integer) the content is seen as a date
(UNIX-time) and the difference from present time and the content-time is
returned as one of these four variations:
"xx min" or "xx hrs" or "xx days" or "xx yrs"
The limits between which layout is used are 60 minutes, 24 hours, 365
days,

NOTE:
If you set this property with a non-integer, it's used to format the four units.
This is the default value:
" min| hrs| days| yrs"

Set another string if you want to change the units. You may include the
"-signs. They are removed anyway.

case case Converts case

Uses "renderCharset" for the operation.

bytes boolean Will format the input (an integer) as bytes: bytes, kb, mb

If you add a value for the property “labels” you can alter the default
suffixes. Labels for bytes, kilo, mega and giga are separated by vertical
bar (|) and possibly encapsulated in "". Eg: " | K| M| G" (which is the default
value)
Thus:

bytes.labels = “ | K| M| G”
substring [p1], [p2] Returns the substring with [p1] and [p2] send as the 2nd and 3rd

parameter to the PHP substring function.

Uses "renderCharset" for the operation.

removeBadHTML boolean Removes "bad" HTML code based on a pattern that filters away HTML that
is considered dangerous for XSS bugs.

stripHtml boolean Strips all html-tags.

TSref - 25

Property: Data type: Description: Default:
crop Crops the content to a certain length

Syntax: +/- (chars) = from left / from right | [string] | [boolean: keep whole
words]

Examples:
20 | ... => max 20 characters. If more, the value will be truncated to first
20 chars and prepended with "..."
-20 | ... => max 20 characters. If more, the value will be truncated to last
20 chars and appended with "..."
20 | ... | 1 => max 20 characters. If more, the value will be truncated to
last 20 chars and appended with "...". If the division is in the middle of a
word, the remains of that word is removed.

Uses "renderCharset" for the operation.

rawUrlEncode boolean Passes the content through rawurlencode()-PHP-function

htmlSpecialChars boolean Passes the content through htmlspecialchars()-PHP-function
Additional property “.preserveEntities” will preserve entities so only non-
entity chars are affected.

doubleBrTag string All double-line-breaks are substituted with this value.

br boolean PHP function nl2br(); Converts linebreaks to
-tags

brTag string All ASCII-codes of "10" (CR) is substituted with value

encapsLines ->encapsLines Lets you split the content by chr(10) and proces each line independently.
Used to format content made with the RTE.

keywords boolean splits the content by characters "," ";" and chr(10) (return), trims each
value and returns a comma-separated list of the values.

innerWrap wrap /stdWrap Wraps the content

innerWrap2 wrap /stdWrap same as .innerWrap (but watch the order in which they are executed)

fontTag wrap

addParams ->addParams Lets you add tag-parameters to the content if the content is a tag!

textStyle ->textStyle Wraps content in font-tags

tableStyle ->tableStyle Wraps content with table-tags

filelink ->filelink Used to make lists of links to files.

preCObject cObject cObject prepended the content

postCObject cObject cObject appended the content

wrapAlign align /stdWrap Wraps content with <div style=text-align:[value];”> | </div> if align is set

typolink ->typolink Wraps the content with a link-tag

TCAselectItem. Array of properties Resolves a comma seperated list of values into the TCA item
representation.

.table (string): The Table to look up

.field (string): The field to resolve

.delimiter (string): Delimiter for concatenating multiple elements.

Notice: Currently this works only with TCA fields of type “select” which are
not database relations.

spaceBefore int /stdWrap Pixels space before. Done with a clear-gif;

spaceAfter int /stdWrap Pixels space after. Done with a clear-gif;

space space [spaceBefore] | [spaceAfter]

Additional property:
.useDiv = 1
If set, a clear gif is not used by rather a <div> tag with a style-attribute
setting the height. (Affects spaceBefore and spaceAfter as well).

wrap wrap /+.splitChar .splitChar defines an alternative splitting character (default is “|” - the
vertical line)

noTrimWrap "special" wrap This wraps the content with the values val1 and val2 in the example below
- including surrounding whitespace! - without trimming the values. Note
that this kind of wrap requires a "|" character to begin and end the wrap.

Example:
| val1 | val2 |

wrap2 wrap /+.splitChar same as .wrap (but watch the order in which they are executed)

TSref - 26

Property: Data type: Description: Default:
dataWrap The content is parsed for sections of {...} and the content of {...} is of the

type getText and substituted with the result of getText.

Example:
This should result in a font-tag where the fontsize is decided by the global
variable "size":
 |

prepend cObject cObject prepended to content (before)

append cObject cObject appended to content (after)

wrap3 wrap /+.splitChar same as .wrap (but watch the order in which they are executed)

outerWrap wrap /stdWrap Wraps the complete content

insertData boolean If set, then the content string is parsed like .dataWrap above.

Example:
Displays the page title:
10 = TEXT
10.value = This is the page title: {page:title}
10.insertData = 1

offsetWrap x,y This wraps the input in a table with columns to the left and top that offsets
the content by the values of x,y. Based on the cObject OTABLE.

.tableParams / .tdParams /stdWrap
- used to manipulate tableParams/tdParams (default width=99%) of the
offset. Default: See OTABLE.

.stdWrap
- stdWrap properties wrapping the offsetWrap'ed output

postUserFunc function-name Calling a PHP-function or method in a class, passing the current content to
the function as first parameter and any properties as second parameter.
Please see the description of the cObject USER for in-depth information.

Example:
You can paste this example directly into a new template record.

page = PAGE
page.typeNum=0
includeLibs.something =
media/scripts/example_callfunction.php
page.10 = TEXT
page.10 {
 value = Hello World
 postUserFunc = user_reverseString
 postUserFunc.uppercase = 1
}
page.20 = TEXT
page.20 {
 value = Hello World
 postUserFunc = user_various->reverseString
 postUserFunc.uppercase = 1
 postUserFunc.typolink = 11
}

postUserFuncInt function-name Calling a PHP-function or method in a class, passing the current content to
the function as first parameter and any properties as second parameter.
The result will be rendered non-cached, outside the main page-rendering.
Please see the description of the cObject USER_INT and
PHP_SCRIPT_INT for in-depth information.
Supplied by Jens Ellerbrock

prefixComment string Prefixes content with a HTML comment with the second part of input string
(divided by "|") where first part is an integer telling how many trailing tabs
to put before the comment on a new line.
The content is parsed through insertData.

Example:
prefixComment = 2 | CONTENT ELEMENT, uid:{field:uid}/{field:CType}

Will indent the comment with 1 tab (and the next line with 2+1 tabs)
(Added in TYPO3 >3.6.0RC1)

TSref - 27

Property: Data type: Description: Default:
editIcons string If not empty, then insert an icon linking to the typo3/alt_doc.php with some

parameters to build and backend user edit form for certain fields.
The value of this property is a list of fields from a table to edit. It's
assumed that the current record of the cObj is the record to be edited.
Syntax: optional tablename : comma list of fieldnames[list of pallette-field
names separated by |]

.beforeLastTag (1,0,-1): If set (1), the icon will be inserted before the last
HTML tag in the content. If -1 the icon will be prepended to the content. If
zero (0) the icon is appended in the end of the content.

.styleAttribute (string): Adds a style-attribute to the icon image with this
value. For instance you can set “position:absolute” if you want a non-
destructive insertion of the icon. Notice: For general styling all edit icons
has the class “frontEndEditIcons” which can be addressed from the
stylesheet of the site.

.iconTitle (string): The title attribute of the image tag.

.iconImg (HTML): Alternative HTML code instead of the default icon
shown. Can be used to set another icon for editing (for instance a red dot
or otherwise... :-)

Example:
This will insert an edit icon which links to a form where the header and
bodytext fields are displayed and made available for editing (provided the
user has access!).
editIcons = tt_content : header, bodytext

Or this line that puts the header_align and date field into a “palette” which
means they are displayed on a single line below the header field. This
saves some space.
editIcons = header[header_align|date], bodytext

editPanel boolean / editPanel See cObject EDITPANEL.

debug boolean Prints content with HTMLSpecialChars() and <PRE></PRE>: Usefull for
debugging which value stdWrap actually ends up with, if you're
constructing a website with TypoScript.
Should be used under construction only.

debugFunc boolean Prints the content directly to browser with the debug() function.
Should be used under construction only.
Set to value “2” the content will be printed in a table - looks nicer.

debugData boolean Prints the current data-array, $cObj->data, directly to browser. This is
where ".field" gets data from.
Should be used under construction only.

[tsref:->stdWrap]

TSref - 28

imgResource:
imgResource is properties that is used with the data type imgResource.

Example:
This scales the image toplogo.gif to the width of 200 pixels
file = toplogo.gif
file.width = 200

Property: Data type: Description: Default:
ext imageExtension /

stdWrap
web

width pixels /stdWrap If both the width and the heigth are set and one of the numbers is
appended by an "m", the proportions will be preserved and thus
width/height are treated as maximum dimensions for the image. The
image will be scaled to fit into width/height rectangle.

If both the width and the heigth are set and at least one of the numbers is
appended by a "c", cropscaling will be enabled. This means that the
proportions will be preserved and the image will be scaled to fit around a
rectangle with width/height dimensions. Then, a centered portion from
inside of the image (size defined by width/height) will be cut out.
The "c" can have a percentage value (-100 ... +100) after it, which defines
how much the cropping will be moved off the center to the border.

Notice that you can only use “m” or “c” at the same time!

Examples:
This crops 120x80px from the center of the scaled image:
.width = 120c
.height = 80c

This crops 100x100px; from landscape-images at the left and portrait-
images centered:
.width = 100c-100
.height = 100c

This crops 100x100px; from landscape-images a bit right of the center
and portrait-images a bit upper than centered:
.width = 100c+30
.height = 100c-25

height pixels /stdWrap see “.width”

params string ImageMagick command-line:
fx. "-rotate 90" or "-negate"

sample boolean If set, -sample is used to scale images instead of -geometry. Sample
does not use antialiasing and is therefore much faster.

alternativeTempPath string Enter an alternative path to use for temp images. Must be found in the list
in TYPO3_CONF_VARS[FE][allowedTempPaths]

frame int Chooses which frame in an gif-animation or pdf-file.
"" = first frame (zero)

import path /stdWrap value should be set to the path of the file
with stdWrap you get the filename from the data-array

Example:
This returns the first image in the field "image" from the data-array:
.import = uploads/pics/
.import.field = image
.import.listNum = 0

maxW pixels /stdWrap Max width

maxH pixels /stdWrap Max height

minW pixels Min width (overrules maxW/maxH)

minH pixels Min height (overrules maxW/maxH)

Masking:
(Black hides, white shows)

m.mask imgResource The mask by which the image is masked onto "m.bgImg". Both "m.mask"
and "m.bgImg" is scaled to fit the size of the imgResource image!
NOTE: Both "m.mask" and "m.bgImg" must be valid images.

m.bgImg imgResource NOTE: Both "m.mask" and "m.bgImg" must be valid images.

TSref - 29

Property: Data type: Description: Default:
m.bottomImg imgResource An image masked by "m.bottomImg_mask" onto "m.bgImg" before the

imgResources is masked by "m.mask".
Both "m.bottomImg" and "m.bottomImg_mask" is scaled to fit the size of
the imgResource image!
This is most often used to create an underlay for the imgResource.
NOTE: Both "m.bottomImg" and "m.bottomImg_mask" must be valid
images.

m.bottomImg_mask imgResource (optional)
NOTE: Both "m.bottomImg" and "m.bottomImg_mask" must be valid
images.

[tsref:->imgResource]

TSref - 30

imageLinkWrap:
This object wraps the input (an image) with a link to the script "showpic.php" with parameters that define such things as
the size of the image, the backgroundcolor of the new window and so on.

An md5-hash of the parameters is generated. The hash is also generated in "showpic.php" and the hashes MUST match in
order for the image to be shown. This is a safety feature in order to prevent users from changing the parameters in the url
themselves.

PHP-function: $cObj->imageLinkWrap()

Property: Data type: Description: Default:
width int (1-1000) If you add "m" to either the width or height, the image will be held in

proportions and width/height works as max-dimensions

height int (1-1000) see ".width"

effects see
GIFBUILDER /
effects. (from
stdgraphics-
library)

Example:
gamma=1,3 | sharpen=80 | solarize=70

sample boolean If set, -sample is used to scale images instead of -geometry. Sample
does not use antialiasing and is therefore much faster.

alternativeTempPath Enter an alternative path to use for temp images. Must be found in the list
in TYPO3_CONF_VARS[FE][allowedTempPaths]

title string page title of the new window (HTML)

bodyTag <tag> Body tag of the new window

wrap wrap Wrap of the image, which is output between the body-tags

target <A>-data:target NOTE: Only if ".JSwindow" is set

JSwindow boolean The image will be opened in a new window which is fitted to the
dimensions of the image!

JSwindow.expand x,y x and y is added to the window dimensions.

JSwindow.newWindow boolean Each picture will open in a new window!

JSwindow.altUrl string /stdWrap If this returns anything, the URL shown in the JS-window is NOT
showpic.php but the url given here!

JSwindow.altUrl_noDef
aultParams

boolean If this is set, the image parameters are not appended to the altUrl
automatically. This is useful if you want to create them with a userfunction
instead.

typolink ->typolink NOTE: This overrides the imageLinkWrap if it returns anything!!

enable boolean /stdWrap The image is linked ONLY if this is true!! 0
[tsref:->imageLinkWrap]

Example:
 1.imageLinkWrap = 1
 1.imageLinkWrap {
 enable = 1
 bodyTag = <BODY bgColor=black>
 wrap = |
 width = 800m
 height = 600
 JSwindow = 1
 JSwindow.newWindow = 1
 JSwindow.expand = 17,20
 }

TSref - 31

numRows:
This object return the number of rows

Property: Data type: Description: Default:
table tablename

select ->select Select query for the operation.

The property “selectFields” is overridden internally with “count(*)”.
[tsref:->numRows]

select:
This object generates an SQL-select statement needed to select records from the database.

Some records are hidden or timed by start and end-times. This is automatically added to the SQL-select by looking in the
tables.php-array (enablefields)

Also, if the "pidInList" feature is used, any page in the pid-list that is not visible for the user of the website IS REMOVED from
the pidlist. Thereby no records from hidden, timed or access-protected pages are selected! Nor records from recyclers.

Property: Data type: Description: Default:
uidInList list of page_id

pidInList list of page_id /
stdWrap

this

orderBy SQL-orderBy without "order by"! Eg. "sorting, title"

groupBy SQL-groupBy without "group by"! Eg. "CType"

max int
+calc
+"total"

max records

Special keyword: "total" is substituted with count(*)

begin int
+calc
+"total"

begin with record number value

Special keyword: "total" is substituted with count(*)

where SQL-where without "where"!, Eg. " (title LIKE '%SOMETHING%' AND NOT doktype) "

andWhere SQL-where /
stdWrap

without "AND"!, Eg. "NOT doktype".

languageField string If set, this points to the field in the record which holds a reference to a
record in sys_language table. And if set, the records returned by the
select-function will be selected only if the value of this field matches the
$GLOBALS[“TSFE”]->sys_language_uid (which is set by the
config.sys_language_uid option)

selectFields string List of fields to select, or “count(*)”. *

join
leftjoin
rightjoin

string Enter tablename for JOIN , LEFT OUTER JOIN and RIGHT OUTER JOIN
respectively.

[tsref:->select]

TSref - 32

split:
This object is used to split the input by a character and then parse the result onto some functions.

For each iteration the split index starting with 0 (zero) is stored in the register key SPLIT_COUNT.

Example:
This is an example of TypoScript-code that imports the content of field "bodytext" from the $cObj->data-array (ln 2). The
content is split by the linebreak-character (ln 4). The items should all be treated with a stdWrap (ln 5) which imports the value
of the item (ln 6). This value is wrapped in a tablerow where the first column is a bullet-gif (ln 7). Finally the whole thing is
wrapped in the proper table-tags (ln 9)

1 20 = TEXT
2 20.field = bodytext
3 20.split {
4 token.char = 10
5 cObjNum = 1
6 1.current = 1
7 1.wrap = <TR><TD valign="top"></TD><TD valign="top"> | </TD></TR>
8 }
9 20.wrap = <TABLE border="0" cellpadding="0" cellspacing="3" width="368"> | </TABLE>

Property: Data type: Description: Default:
token str /stdWrap string or character (token) used to split the value

max int /stdWrap max number of splits

min int /stdWrap min number of splits.

returnKey int /stdWrap Instead of parsing the split result, just return this element of the index
immediately.

cObjNum cObjNum
+optionSplit

This is a pointer the array of this object ("1,2,3,4"), that should treat the
items, resulting from the split.

1,2,3,4 ->CARRAY /
stdWrap

The object that should treat the value.
NOTE: The "current"-value is set to the value of current item, when the
objects are called. See "stdWrap" / current.

Example (stdWrap used):
1.current = 1
1.wrap = |

Example (CARRAY used):
1 {
 10 = TEXT
 10.current = 1
 10.wrap = |
 20 = CLEARGIF
 20.height = 20
}

wrap wrap
+optionSplit

Defines a wrap for each item.

[tsref:->split]

TSref - 33

if:
This function returns true if ALL of the present conditions are met (they are AND'ed). If a single condition is false, the value
returned is false.

The returned value may still be negated by the ".negate"-property.

Property: Data type: Description: Default:
isTrue str /stdWrap If the content is "true".... (not empty string and not zero)

isFalse str /stdWrap If the content is "false"... (empty or zero)

isPositive int /stdWrap
+ calc

returns false if content is not positive

isGreaterThan value /stdWrap returns false if content is not greater than ".value"

isLessThan value /stdWrap returns false if content is not less than ".value"

equals value /stdWrap returns false if content does not equal ".value"

isInList value /stdWrap returns false if content is not in the comma-separated list ".value".
The list in ".value" may not have spaces between elements!!

value value /stdWrap "value" (the comparison value mentioned above)

negate boolean This negates the result just before it exits. So if anything above returns
true the overall returns ends up returning false!!

directReturn boolean If this property exists the true/false of this value is returned. Could be used
to set true/false by TypoScript constant

[tsref:->if]

Explanation:
the "if"-function is a very odd way of returning true or false! Beware!

"if" is normally used to decide whether to render an object or return a value (see the cObjects and stdWrap)

Here is how it works:

The function returns true or false. Whether it returns true or false depends on the properties of this function. Say if you set
"isTrue = 1" then result is true. If you set "isTrue.field = header" the function returns true if the field "header" in $cObj->data is
set!

If you want to compare values, you must load a base-value in the ".value"-property. Example:
.value = 10
.isGreaterThan = 11

This would return true because the value of ".isGreaterThan" is greater than 10, which is the base-value.

More complex is this:
.value = 10
.isGreaterThan = 11
.isTrue.field = header
.negate = 1

There are two conditions - isGreaterThan and isTrue. If they are both true, the total is true (AND) BUT (!) the result if the
function in total is false because the ".negate"-flag inverts the result!

Example:
This is a GIFBUILDER object that will write "NEW" on a menu-item if the field "newUntil" has a date less than the current
date!
...
 30 = TEXT
 30.text = NEW!
 30.offset = 10,10
 30.if {
 value.data = date: U
 isLessThan.field = newUntil
 negate = 1
 }
...

TSref - 34

typolink:
Wraps the incoming value with link.

If this is used from parseFunc the $cObj->parameters-array is loaded with the link-parameters (lowercased)!

Property: Data type: Description: Default:
extTarget target /stdWrap target used for external links _top

target target /stdWrap target used for internal links

no_cache boolean /stdWrap Adds a "&no_cache=1"-parameter to the link

useCacheHash boolean If set, the additionalParams list is exploded and calculated into a
hashstring appended to the url, like “&cHash=ae83fd7s87”. When the
caching mechanism sees this value, it calculates the same value on the
server based on incoming values in HTTP_GET_VARS, excluding
id,type,no_cache,ftu,cHash,MP values. If the incoming cHash value
matches the calculated value, the page may be cached based on this.
The [SYS][encryptionKey] is included in the hash in order to make it
unique for the server and non-predictable.

additionalParams string /stdWrap This is parameters that are added to the end of the url. This must be code
ready to insert after the last parameter.

Example:
'&print=1'
'&sword_list[]=word1&sword_list[]=word2'

Applications:
This is very useful when linking to pages from a searchresult. The
searchwords are stored in the register-key SWORD_PARAMS and can be
insert directly like this:
.additionalParams.data = register:SWORD_PARAMS

NOTE: This is only active for internal links!

addQueryString boolean Add the QUERY_STRING to the start of the link. Notice that this does not
check for any duplicate parameters! This is not a problem (only the last
parameter of the same name will be applied), but enable
"config.uniqueLinkVars" if you still don't like it.

.method: If set to to GET or POST then then the parsed query arguments
(GET or POST data) will be used. This settings are useful if you use URL
processing extensions like Real URL, which translate part of the path into
query arguments.
It's also possible to get both, POST and GET data, on setting this to
"POST,GET" or "GET,POST". The last method in this sequence takes
precedence and overwrites the parts that are also present for the first
method.

.exclude: List of query arguments to exclude from the link (eg L or cHash).

wrap wrap Wraps the links.

ATagBeforeWrap boolean If set, the link is first wrapped with ".wrap" and then the <A>-tag.

TSref - 35

Property: Data type: Description: Default:
parameter string /stdWrap This is the data, that ->typolink uses to create the link. The value is

trimmed and if it's empty, ->typolink returns the input value untouched.

NOTE: If used from parseFunc, this value should be imported by:
typolink.parameter.data = parameters : allParams

Examples:
Internal links:
integers (51): creates a link to page with uid = 51
filerefs (fileadmin/somedir/thedoc.html): creates a link to the file on the
local server.
strings (some_alias): creates a link to the page with alias = "some_alias"

External links:
email-adresses (name@email.com): creates a link to the email-addr.
domains (www.domain.com): creates link to http://-page

The input is parsed like this:
First the parameter is splitted by character-space. This provides a way to
pass more parameters. See "target" below here.
If a "@" is in the string, it's an email
If a period (.) is in the string AND if the period (.) is found before a slash (/)
is found OR if a doubleslash is found, then it's a URL
If a slash (/) is found, it's a filereference. If the file/directory does not exist
on the server, the link is NOT made!

Now the input can be an alias or page-id. If the input is an integer it's a
page-id, if it's two comma separated integers, it's a id/type pair, else it's an
alias. For page-id's or aliases you can prepend a "#" mark with a number
indication tt_content record number on the page to jump to! (if .section-
property is present, it overrides this).
If you insert only "#234" where "234" is the tt_content record number, it
links to the current page-id
Notice: The parameter can contain a keyword that hands over link
generation to an external function. See example below this table!

Target
Target is normally defined by the "extTarget" and "target" properties of
typolink. But you may override this target by adding the new target after
the parameter separated by a whitespace. Thus the target becomes the
second parameter.
If the “Target” parameter is set to the “-” character, then it's the same as
no target passed to the function. This feature enables you to still pass a
class as third parameter and title as fourth parameter without setting the
target also.

Open in windows with fixed dimensions (JavaScript)
It is possible to open the link in a window opened by JavaScript (with
“window.open”). For this, just set the target value to “123x456” where 123
is the window width and 456 is the window height. You can also specify
additional parameters to the function by entering them separated from the
width and height with a colon “:”. For instance
“230x450:resizable=0,location=1” will disable resizing of the window and
enable the location bar.
Also see property “JSwindow”.

Class
If you specify a third parameter separated by whitespace in the parameter
value this becomes the class-parameter of the link. This class parameter
is inserted in the link-tag before any values from .ATagParams which
means this class value will override any class value set in ATagParams (at
least for MSIE). If set to “-”, then it's the same as no class passed to the
function. This feature enables you to still pass a title as fourth parameter
without setting the class also.

Title
The title attribute is normally specified via .ATagParams or directly via
the .title property. But you may override this value by adding the desired
title as the fourth parameter (parameters separated by whitespace) to
typolink.

Examples of multiparameters:
Consider this .parameter value passed to this function:

51 _blank blueLink

This would result in a link approx like this:

TSref - 36

Property: Data type: Description: Default:
title string /stdWrap Sets the title parameter of the A-tag.

JSwindow_params string Preset values for opening the window. This example lists almost all
possible attributes:
status=1,menubar=1,scrollbars=1,resizable=1,location=1,directories=1,tool
bar=1

returnLast string If set to "url" then it will return the URL of the link ($this->lastTypoLinkUrl)
If set to "target" it will return the target of the link.
So, in these two cases you will not get the value wrapped but the url or
target value returned!

section string /stdWrap If this value is present, it's prepended with a "#" and placed after any
internal url to another page in TYPO3.
This is used create a link, which jumps from one page directly the section
on another page.

ATagParams <A>-params /
stdWrap

Additional parameters

Example:
class=”board”

userFunc function-name This passes the link-data compiled by the typolink function to a user-
defined function for final manipulation.
The $content variable passed to the user-function (first parameter) is an
array with the keys “TYPE”, “TAG”, “url”, “targetParams” and
“aTagParams”.
TYPE is an indication of link-kind: mailto, url, file, page
TAG is the full <A>-tag as generated and ready from the typolink function.
The latter three is combined into the 'TAG' value after this formula:

<a href="'.$finalTagParts['url'].'"'.
 $finalTagParts['targetParams'].
 $finalTagParts['aTagParams'].'>

The userfunction must return an <A>-tag.
[tsref:->typolink]

Using link handlers
A feature (added in TYPO3 4.1) allows you to register a link handler for a keyword you define. For example, you can link to a
page with id 34 with “<link 34>” in a typical bodytext field which converts <link> tags with “->typolink”. But what if you have an
extension, “pressrelease”, and wanted to link to a press release item displayed by a plugin on some page you don't
remember? With this feature its possible to create the logic for this in that extension.

So, in a link field (the “parameter” value for ->typolink) you could enter “pressrelease:123”:

Some TypoScript will usually transfer this value to the “parameter” attribute of the ->typolink call. When “pressrelease:123”
enters ->typolink as the “parameter” it will be checked if “pressrelease” is a keyword with which a link handler is associated
and if so, that handler is allowed to create the link.

Registering the handler for keyword “pressrelease” is done like this:
$TYPO3_CONF_VARS['SC_OPTIONS']['tslib/class.tslib_content.php']['typolinkLinkHandler']['pressrelease'] =
'EXT:pressrelease/class.linkHandler.php&tx_linkHandler';

The class file “pressrelease/class.linkHandler.php“ contains the class “tx_linkHandler” which could look like this:

class tx_linkHandler {
function main($linktxt, $conf, $linkHandlerKeyword, $linkHandlerValue, $link_param, &$pObj) {

$lconf = array();
$lconf['useCacheHash'] = 1;
$lconf['parameter'] = 34;
$lconf['additionalParams'] = '&tx_pressrelease[showUid]='.rawurlencode($linkHandlerValue);
return $pObj->typoLink($linktxt, $lconf);

}
}

In this function, the value part after the keyword is set as the value of a GET parameter, “&tx_pressrelease[showUid]” and the
“parameter” value of a new ->typolink call is set to “34” which assumes that on page ID 34 a plugin is put that will display
pressrelease 123 when called with &tx_pressrelease[showUid]=123. In addition you can see the “userCacheHash” attribute

TSref - 37

for the typolink function used in order to produce a cached display.

The link that results from this operation will look like this:

The link would be encoded with RealURL and respect config.linkVars as long as ->typolink is used to generate the final URL.

TSref - 38

textStyle
This is used to style text with a bunch of standard options + some site-specific.

Property: Data type: Description: Default:
align.field align Set to fieldname from the $cObj->data-array

face.field string Set to fieldname from the $cObj->data-array

[1] = "Times New Roman";
[2] = "Verdana,Arial,Helvetica,Sans serif";
[3] = "Arial,Helvetica,Sans serif";

face.default string /stdWrap [default] = User defined

size.field string Set to fieldname from the $cObj->data-array

[1] = 1;
[2] = 2;
[3] = 3;
[10] = "+1";
[11] = "-1";

size.default string /stdWrap [default] = User defined

color.field string Set to fieldname from the $cObj->data-array

See "content.php" for the colors available

color.default string /stdWrap [default] = User defined

color.1
color.2

string [1],[2] = User defined

properties.field int Set to fieldname from the $cObj->data-array

The property values goes like this:
bit 0:
bit 1: <I>
bit 2: <U>
bit 3: (uppercase)

Thus a value of 5 would result in bold and underlined text

properties.default int /stdWrap [default] = User defined (This value will be used whenever ".field" is false!)

altWrap wrap If this value is set, the wrapping with a font-tag based on font,size and
color is NOT done. Rather the element is wrapped with this value.
Use it to assign a stylesheet by setting this value to eg.

<div class=”text”> | </div>
[tsref:->textStyle]

TSref - 39

encapsLines
Property: Data type: Description: Default:

encapsTagList list of strings List of tags which qualify as encapsulating tags. Must be lowercase.

Example:
encapsTagList = div, p

This setting will recognize the red line below as encapsulated lines:

First line of text
Some <div>text</div>
<p>Some text</p>
<div>Some text</div>
Some text

remapTag.[tagname] string Enter a new tag name here if you wish the tagname of any encapsulation
to be unified to a single tag name.

For instance, setting this value to “remapTags.P=DIV” would convert:

<p>Some text</p>
<div>Some text</div>

to

<div>Some text</div>
<div>Some text</div>

([tagname] is in uppercase.)

addAttributes.
[tagname]

array of strings Attributes to set in the encapsulation tag.

Example:
addAttributes.P {
 style=padding-bottom:0px; margin-top:1px; margin-
bottom:1px;
 align=center
}

([tagname] is in uppercase.)

.setOnly =
exists : This will set the value ONLY if the property does not already exist
blank : This will set the value ONLY if the property does not already exist
OR is blank (“”)

Default is to always override/set the attributes value.

removeWrapping boolen If set, then all existing wrapping will be removed.

This:

First line of text
Some <div>text</div>
<p>Some text</p>
<div>Some text</div>
Some text

becomes this:

First line of text
Some <div>text</div>
Some text
Some text
Some text

wrapNonWrappedLin
es

wrap Wrapping for non-encapsulated lines

Example:
.wrapNonWrappedLines = <P>|</P>

This:

First line of text
<p>Some text</p>

becomes this:

<P>First line of text</P>
<p>Some text</p>

innerStdWrap_all ->stdWrap Wraps the content inside all lines, whether they are encapsulated or not.

TSref - 40

Property: Data type: Description: Default:
encapsLinesStdWrap
.[tagname]

->stdWrap Wraps the content inside all encapsulated lines.
([tagname] is in uppercase.)

defaultAlign string /stdWrap If set, this value is set as the default “align” value of the wrapping tags,
both from .encapsTagList, .bypassEncapsTagList and .nonWrappedTag

nonWrappedTag tagname For all non-wrapped lines, you can set here which tag it should be
wrapped in. Example would be “P”. This is an alternative to .
wrapNonWrappedLines and has the advantage that it's attributes are set
by .addAttributes as well as defaultAlign. Thus you can easier match the
wrapping tags used for nonwrapped and wrapped lines.

[tsref:->encapsLines]

Example:
encapsLines {
 encapsTagList = div,p
 remapTag.DIV = P
 wrapNonWrappedLines = <P>|</P>
 innerStdWrap_all.ifEmpty =
}

This example shows how to handle content rendered by TYPO3 and stylesheets where the <P> tag is used to encapsulate
each line.

Say, you have made this content with the Rich Text Editor:
This is line # 1
[Above is an empty line!]
<DIV align=right>This line is right-aligned</DIV>

After being processed by encapsLines with the above configuration, the content looks like this:
<P>This is line # 1 </P>
<P> </P>
<P>[Above is an empty line!] </P>
<P align="right">This line is right-aligned</P>

Each line is nicely wrapped with <P> tags. The line from the database which was already wrapped (but in <DIV>-tags) has
been converted to <P>, but keeps it's alignment. Overall, notice that the Rich Text Editor ONLY stored the line which was in
fact right-aligned - every other line from the RTE was stored without any wrapping tags, so that the content in the database
remains as human readable as possible.

Example:

Make sure nonTypoTagStdWrap operates on content outside <typolist> and <typohead> only:
tt_content.text.20.parseFunc.tags.typolist.breakoutTypoTagContent = 1
tt_content.text.20.parseFunc.tags.typohead.breakoutTypoTagContent = 1
... and no
 before typohead.
tt_content.text.20.parseFunc.tags.typohead.stdWrap.wrap >
Setting up nonTypoTagStdWrap to wrap the text with P-tags
tt_content.text.20.parseFunc.nonTypoTagStdWrap >
tt_content.text.20.parseFunc.nonTypoTagStdWrap.encapsLines {
 encapsTagList = div,p
 remapTag.DIV = P
 wrapNonWrappedLines = <P style="margin:0 0 0;">|</P>
 # Forcing these attributes onto the encapsulation-tags if any
 addAttributes.P {
 style=margin:0 0 0;
 }
 innerStdWrap_all.ifEmpty =
 innerStdWrap_all.textStyle < tt_content.text.20.textStyle
}
finally removing the old textstyle formatting on the whole bodytext part.
tt_content.text.20.textStyle >
... and
-tag after the content is not needed either...
tt_content.text.20.wrap >

This is an example of how to wrap traditional tt_content bodytext with <P> tags, setting the line-distances to regular space
like that generated by a
 tag, but staying compatible with the RTE features such as assigning classes and alignment to
paragraphs.

TSref - 41

tableStyle
This is used to style a table-tag. The input is wrapped by this table-tag

Property: Data type: Description: Default:
align align /stdWrap

border int /stdWrap

cellspacing int /stdWrap

cellpadding int /stdWrap

color.field string Set to fieldname from the $cObj->data-array

color.default
color.1
color.2

string [default],[1],[2] = User defined

params <TABLE>-params
[tsref:->tableStyle]

Example:

styles.content.tableStyle {
 align.field = text_align
 border.field = table_border
 cellspacing.field = table_cellspacing
 cellpadding = 1
 color.field = table_bgColor
 color.default = {$styles.content.tableStyle.color}
 color.1 = {$styles.content.tableStyle.color1}
 color.2 = {$styles.content.tableStyle.color2}
}

addParams
Property: Data type: Description: Default:

_offset int Use this to define which tag you want to manipulate.
1 is the first tag in the input, 2 is the second, -1 is the last, -2 is the second
last

1

(array of strings) string /stdWrap This defines the content of each added property to the tag.
If there is a tag-property with this name already (case-sensitive!) that
property will be overridden!
If the returned value is a blank string (but not zero!) then the existing (if
any) property will not be overridden.

[tsref:->addParams]

Example:

page.13 = HTML
page.13.value = <tr><td valign=top>
page.13.value.addParams.bgcolor = {$menuCol.bgColor}
page.13.value.addParams._offset = -1

Result example:
<tr><td valign="top" bgcolor="white">

(This example adds the 'bgColor' property to the value of the HTML cObject, if the content is not “”. (zero counts as a value
here!))

TSref - 42

filelink
Input is a filename in the path "path".

icon, size and file is rendered in the listed order.

Property: Data type: Description: Default:
path path /stdWrap Example:

"uploads/media/"

icon boolean /stdWrap Set if icon should be shown

icon_image_ext_list list of
imageextensions

This is the extensions that should render as thumbsnails instead of icons.

iconCObject cObject Enter a cObject to use alternatively for the icons, eg. IMAGE type.
If this is set, it'll substitute the use of the thumbs-script for display of
thumbnails.

icon_link boolean If the icon should be linked also

labelStdWrap ->stdWrap stdWrap options for the label (by default the label is the filename) before
being wrapped with the A-tags.
Use this to eg. import another label from a database field or such.

wrap wrap Wraps the links.

ATagBeforeWrap boolean If set, the link is first wrapped with ".wrap" and then the <A>-tag.

file ->stdWrap stdWrap of the label (by default the label is the filename) after having been
wrapped with A-tag!

size boolean /stdWrap Set if size should be shown

jumpurl boolean Decides if the link should call the script with the jumpurl paramter in order
to register any clicks in the stat.
This has the advantage that any clicks on the file will register in the stat.
The disadvantage is, that users cant right-click and select "Save Target
As" in the browser.

Properties:
.secure (boolean) If set, then the file pointed to by jumpurl
is NOT redirected to, but rather it's read from the file and returned with a
correct header. This option adds a hash and locationData to the url and
there MUST be access to the record in order to download the file. If the
fileposition on the server is furthermore secured by a .htaccess file
preventing ANY access, you've got secure download here!

.secure.mimeTypes (list of mimetypes, syntax [ext] = [mimetype]

Example:
.secure = 1
.secure.mimeTypes = pdf=application/pdf, doc=application/msword

target target

stdWrap ->stdWrap

ATagParams <A>-params /
stdWrap

Additional parameters

Example:
class=”board”

removePrependedNu
mbers

boolean if set, any 2-digit prepended numbers (“eg _23”) in the filename is
removed.

altText
titleText

string /stdWrap For icons (image made with "iconCObject" must have their own properties)

If no titltext is specified, it will use the alttext instead
If no alttext is specified, it will use an empty alttext

longdescURL string /stdWrap For icons (image made with "iconCObject" must have their own properties)

"longdesc" attribute (URL pointing to document with extensive details
about image).

[tsref:->filelink]

Example:

 1.filelink {
 path = uploads/media/
 icon = 1
 icon.wrap = <td> | </td>
 size = 1
 size.wrap = <td> | </td>

TSref - 43

 file.fontTag = {$styles.content.uploads.wrap}
 file.wrap = <td> | </td>
 jumpurl = 1
 target = _blank
 stdWrap = <tr> | </tr>
 }

TSref - 44

parseFunc:
This object is used to parse some content for stuff like special typo tags, the "makeLinks"-things and so on...

Example:
This example takes the content of the field "bodytext" and parses it through the makelinks-functions and substitutes all
<LINK> and <TYPOLIST>-tags with something else.

tt_content.text.default {
 20 = TEXT
 20.field = bodytext
 20.wrap = |

 20.brTag =

 20.parseFunc {
 makelinks = 1
 makelinks.http.keep = path
 makelinks.http.extTarget = _blank
 makelinks.mailto.keep = path
 tags {
 link = TEXT
 link {
 current = 1
 typolink.extTarget = _blank
 typolink.target={$cLinkTagTarget}
 typolink.wrap = |
 typolink.parameter.data = parameters : allParams
 }
 typolist < tt_content.bullets.default.20
 typolist.trim = 1
 typolist.field >
 typolist.current = 1
 }
 }
}

TSref - 45

Property: Data type: Description: Default:
externalBlocks list of

tagnames/+properti
es

This allows you to pre-split the content passed to parseFunc so that only
content outside the blocks with the given tags is parsed.
Extra properties:
.[tagname] {
 callRecursive = [boolean]; If set, the content of the block is directed into
parseFunc again. Otherwise the content is just passed through with no
other processing than stdWrap (see below)
 callRecursive.dontWrapSelf = [boolean]; If set, the tags of the block is
not wrapped around the content returned from parseFunc.
 callRecursive.alternativeWrap = Alternative wrapping instead of the
original tags.
 callRecursive.tagStdWrap = ->stdWrap processing of the block-tags.
 stdWrap = ->stdWrap processing of the whole block (regardless of
whether callRecursive was set.)
 stripNLprev = [boolean]; Strips off last linebreak of the previous outside
block
 stripNLnext = [boolean]; Strips off first linebreak of the next outside
block
 stripNL = [boolean]: Does both of the above.

 HTMLtableCells = [boolean]; If set, then the content is expected to be a
table and every table-cell is traversed.
 # Below, default is all cells and 1,2,3... overrides for specific cols.
 HTMLtableCells.[default/1/2/3/...] {
 callRecursive = [boolean]; The content is parsed through current
parseFunc
 stdWrap = ->stdWrap processing of the content in the cell
 tagStdWrap = -> The <TD> tag is processed by ->stdWrap
 }
 HTMLtableCells.addChr10BetweenParagraphs = [boolean]; If set,
then all </P><P> appearances will have a chr(10) inserted between them
}

Example:
This example is used to split regular bodytext content so that tables and
blockquotes in the bodytext are processed correctly. The blockquotes are
passed into parseFunc again (recursively) and further their top/bottom
margins are set to 0 (so no apparent linebreaks are seen)
The tables are also displayed with a number of properties of the cells
overridden.
tt_content.text.20.parseFunc.externalBlocks {
 blockquote.callRecursive=1
 blockquote.callRecursive.tagStdWrap.HTMLparser = 1
 blockquote.callRecursive.tagStdWrap.HTMLparser {
 tags.blockquote.fixAttrib.style.list = margin-
bottom:0;margin-top:0;
 tags.blockquote.fixAttrib.style.always=1
 }
 blockquote.stripNLprev=1
 blockquote.stripNLnext=1
 table.stripNL=1
 table.stdWrap.HTMLparser = 1
 table.stdWrap.HTMLparser {
 tags.table.overrideAttribs = border=0 cellpadding=2
cellspacing=1 style="margin-top:10px; margin-
bottom:10px;"
 tags.tr.allowedAttribs=0
 tags.td.overrideAttribs = valign=top
bgcolor="#eeeeee" style="font-family : Verdana, Geneva,
Arial, Helvetica, sans-serif; font-size :
10px;"
 }
}

constants boolean The toplevel-defined constants will be substituted in the text. The constant-
name is wrapped in "###".

Example:
constants.EMAIL = email@email.com
(NOTE: This is toplevel TypoScript!)
All cases of the string ###EMAIL### will be substituted in the text. The
constants are defined as a toplevel object.

TSref - 46

Property: Data type: Description: Default:
short array of strings Like constants above, but local.

Example:
This substitutes all occurencies of “T3” with “TYPO3 CMS” and “T3web”
with a link to typo3.com.
short {
 T3 = TYPO3 CMS
 T3web = typo3
}

plainTextStdWrap ->stdWrap This is stdWrap properties for all non-tag content.

userFunc function name This passes the non-tag content to a function of your own choice. Similar
to eg. .postUserFunc in stdWrap.
Remember the function name must possibly be prepended “user_”

nonTypoTagStdWrap ->stdWrap Like .plainTextStdWrap. Difference:
.plainTextStdWrap works an ALL non-tag pieces in the text. .
nonTypoTagStdWrap is post processing of all text (including tags)
between special TypoTags (unless .breakoutTypoTagContent is not set for
the TypoTag)

nonTypoTagUserFun
c

function name Like .userFunc. Differences is (like nonTypoTagStdWrap) that this is post
processing of all content pieces around TypoTags while .userFunc
processes all non-tag content. (Notice: .breakoutTypoTagContent must be
set for the TypoTag if it's excluded from nonTypoTagContent)

sword wrap Marks up any words from the GET-method send array sword_list[] in the
text. The word MUST be at least two characters long!
NOTE: works only with $GLOBALS["TSFE"]->no_cache==1

|

makelinks boolean /
->makelinks

Convert webadresses prefixed with "http://" and mail-adresses prefixed
with "mailto:" to links.

tags ->tags Here you can define custom tags that will parse the content to something.

allowTags list of strings List of tags, which are allowed to exist in code!
Highest priority: If a tag is found in allowTags, denyTags is ignored!!

denyTags list of strings List of tags, which may NOT exist in code! (use "*" for all.)
Lowest priority: If a tag is NOT found in allowTags, denyTags is checked.
If denyTags is not "*" and the tag is not found in the list, the tag may exist!

Example:
This allows , <I>, <A> and -tags to exist
.allowTags = b,i,a,img
.denyTags = *

if ->if if "if" returns false the input value is not parsed, but returned directly.
[tsref:->parseFunc]

makelinks:
makelinks substitutes all appearances of

http://www.webaddress.rld

mailto:name@email.rld

... to a real linktag

Property: Data type: Description: Default:
http.extTarget target The target of the link _top

http.wrap wrap wrap around the link

http.ATagBeforeWrap boolean If set, the link is first wrapped with http.wrap and then the <A>-tag.

http.keep list:
"scheme","path",
"query"

As default the link-text will be the full domain-name of the link.

Examples:
http://www.webaddress.rld/test/doc.php?id=3
"": www.webaddress.rld
"scheme": http://www.webaddress.rld
"scheme,path": http://www.webaddress.rld/test/doc.php
"scheme,path,query": http://www.webaddress.rld/test/doc.php?id=3

http.ATagParams <A>-params /
stdWrap

Additional parameters

Example:
class=”board”

mailto.wrap wrap wrap around the link

mailto.ATagBeforeWrap boolean If set, the link is first wrapped with mailto.wrap and then the <A>-tag.

TSref - 47

Property: Data type: Description: Default:
mailto.ATagParams <A>-params /

stdWrap
Additional parameters

Example:
class=”board”

[tsref:->makelinks]

TSref - 48

tags:
Used to create custom tags and define how they should be parsed. This is used in conjunction with parseFunc.

Property: Data type: Description: Default:
Array... cObject +stripNL

+
breakoutTypoTa
gContent

Every entry in the Array... corresponds to a tag, that will be parsed. The
elements MUST be in lowercase.
Every entry must be set to a content-object.
"current" is set to the content of the tag, eg <TAG>content</TAG>: here
"current" is set to "content".
Parameters:
Parameters of the tag is set in $cObj->parameters (key is lowercased):
<TAG COLOR="red">content</TAG>
=> $cObj->parameters[color] = red
Special added properties to the content-object:
$cObj->parameters[allParams]: this is automatically set to the whole
parameter-string of the tag, eg ' color="red"'
[cObject].stripNL: is a boolean option, which tells parseFunc that
NewLines before and after content of the tag should be stripped.
[cObject].breakoutTypoTagContent: is a boolean option, which tells
parseFunc that this block of content is breaking up the nonTypoTag
content and that the content after this must be re-wrapped.

Examples:
tags.bold = TEXT
tags.bold {
 current = 1
 wrap = |
}
tags.bold.stripNL = 1

[tsref:->tags]

Example:
This example creates 4 custom tags. The <LINK>-, <TYPOLIST>-, <GRAFIX>- and <PIC>-tags
<LINK> is made into a typolink and provides an easy way of creating links in text
<TYPOLIST> is used to create bullet-lists
<GRAFIX> will create a gif-file 90x10 pixels where the text is the content of the tag.
<PIC> lets us place an image in the text. The content of the tag should be the image-reference in "fileadmin/"

 tags {
 link = TEXT
 link {
 current = 1
 typolink.extTarget = _blank
 typolink.target={$cLinkTagTarget}
 typolink.wrap = |
 typolink.parameter.data = parameters : allParams
 }
 typolist < tt_content.bullets.default.20
 typolist.trim = 1
 typolist.field >
 typolist.current = 1
 grafix = IMAGE
 grafix {
 file = GIFBUILDER
 file {
 XY = 90,10
 100 = TEXT
 100.text.current = 1
 100.offset = 5,10
 100.nicetext = 1
 }
 }
 pic = IMAGE
 pic.file.import = fileadmin/
 pic.file.import.current = 1
 }

HTMLparser:
Property: Data type: Description:

allowTags list of tags Default allowed tags

TSref - 49

Property: Data type: Description:
tags.[tagname] boolean/-

>HTMLparser_tags
Either set this property to 0 or 1 to allow or deny the tag. If you enter
->HTMLparser_tags properties, those will automatically overrule this option, thus
it's not needed then.
[tagname] in lowercase.

localNesting list of tags, must be
among preserved tags

List of tags (among the already set tags), which will be forced to have the nesting-
flag set to true

globalNesting (ibid) List of tags (among the already set tags), which will be forced to have the nesting-
flag set to “global”

rmTagIfNoAttrib (ibid) List of tags (among the already set tags), which will be forced to have the
rmTagIfNoAttrib set to true

noAttrib (ibid) List of tags (among the already set tags), which will be forced to have the
allowedAttribs value set to zero (which means, all attributes will be removed.

removeTags (ibid) List of tags (among the already set tags), which will be configured so they are
surely removed.

keepNonMatchedTags boolean / “protect” If set (true=1), then all tags are kept regardless of tags present as keys in $tags-
array.
If "protect", then the preserved tags have their <> converted to < and >
Default is to REMOVE all tags, which are not specifically assigned to be allowed!
So you might probably want to set this value!

htmlSpecialChars -1 / 0 / 1 / 2 This regards all content which is NOT tags:
“0” means “disabled” - nothing is done
“1” means the content outside tags is htmlspecialchar()'ed (PHP-function which
converts &”<> to &...;)
“2” is the same as “1” but entities like “&” or “ê” are untouched.
“-1” does the opposite of “1” - converts < to <, > to >, " to “ etc.

xhtml_cleaning boolean Cleans up the content for XHTML compliance. Still slightly experimental and
supports only some clean up operations (like convertion tags and attributes to
lower case).

[page:->HTMLparser; tsref:->HTMLparser]

HTMLparser_tags:
Property: Data type: Description:

overrideAttribs string If set, this string is preset as the attributes of the tag.

allowedAttribs '0' (zero) = no attributes allowed, '[commalist of attributes]' = only allowed
attributes. If blank/not set, all attributes are allowed.

fixAttrib.[attribute].set string Force the attribute value to this value.

fixAttrib.[attribute].unset boolean If set, the attribute is unset.

fixAttrib.[attribute].default string If no attribute exists by this name, this value is set as default value (if this
value is not blank)

fixAttrib.[attribute].always boolean If set, the attribute is always processed. Normally an attribute is processed
only if it exists

fixAttrib.[attribute].trim
fixAttrib.[attribute].intval
fixAttrib.[attribute].upper
fixAttrib.[attribute].lower

boolean If any of these keys are set, the value is passed through the respective
PHP-functions.

fixAttrib.[attribute].range [low],[high] Setting integer range.

fixAttrib.[attribute].list list of values,
trimmed

Attribute value must be in this list. If not, the value is set to the first element.

fixAttrib.[attribute].removeIfFalse boolean/”blank”
string

If set, then the attribute is removed if it is "false". If this value is set to
"blank" then the value must be a blank string (that means a "zero" value will
not be removed)

fixAttrib.[attribute].removeIfEquals string If the attribute value matches the value set here, then it is removed.

fixAttrib.[attribute].casesensitiveComp boolean If set, the comparison in .removeIfEquals and .list will be case-sensitive. At
this point, it's insensitive.

fixAttrib.[attribute].prefixLocalAnchors integer If the first char is a “#” character (anchor of fx. <a> tags) this will prefix
either a relative or absolute path.
If the value is “1” you will get the absolute path (t3lib_div::getIndpEnv
('TYPO3_REQUEST_URL'))
If the value is “2” you will get the relative path (stripping of
t3lib_div::getIndpEnv('TYPO3_SITE_URL'))

Example:

...fixAttrib.href.prefixLocalAnchors = 1

TSref - 50

Property: Data type: Description:
fixAttrib.[attribute].prefixRelPathWith string If the value of the attribute seems to be a relative URL (no scheme like

“http” and no “/” as first char) then that value of this property will be prefixed
the attribute.

Example:

...fixAttrib.src.prefixRelPathWith = http://192.168.230.3/typo3/32/dummy/

fixAttrib.[attribute].userFunc function reference User function for processing of the attribute.

Example:

...fixAttrib.href.userFunc = tx_realurl->test_urlProc

protect boolean If set, the tag <> is converted to < and >

remap string If set, the tagname is remapped to this tagname

rmTagIfNoAttrib boolean If set, then the tag is removed if no attributes happend to be there.

nesting If set true, then this tag must have starting and ending tags in the correct
order. Any tags not in this order will be discarded. Thus
'<I></I>' will be converted to '<I></I>'.
Is the value "global" then true nesting in relation to other tags marked for
"global" nesting control is preserved. This means that if and <I> are set
for global nesting then this string '<I></I>' is converted to
''

[page:->HTMLparser_tags; tsref:->HTMLparser_tags]

TSref - 51

Constants

What are constants?
Constants are values defined in the "Constants"-field of a template. They follow the syntax of ordinary TypoScript!

NOTE, reserved name: The object or property "file" is always interpreted as data type "resource".

NOTE: Toplevel "object" TSConstantEditor cannot be used. It's reserved for configuration of the ConstantEditor module
(Changed from beta4)

Example:
Here "bgCol" is set to "red" and "file.toplogo" is set to "logo*.gif" which is found in the resource-field of the template.
bgCol = red
topimg.width = 200
topimg.file.pic2 = fileadmin/logo2.gif
file.toplogo = logo*.gif

This could also be defined like this:

bgCol = red
file {
 toplogo = logo*.gif
}
topimg {
 width = 200
 file.pic2 = fileadmin/logo2.gif
}

(The objects in bold is the reserved word "file" and the properties are always of data type "resource"

Inserting constants
Constants are inserted in the template-setup by performing an ordinary str_replace operation! You insert them like this:

{$bgCol}
{$topimg.width}
{$topimg.file.pic2}
{$file.toplogo}

Example:
page = PAGE
page.typeNum = 0
page.bodyTag = <body bgColor="{$bgCol}">
page.10 = IMAGE
page.10.file = {$file.toplogo}

Only defined constants are substituted.

Constants in included templates are also substituted as the whole template is just on large chunk of text.

Constants are case sensitive.

You should use a systematic naming of constants. Seek inspiration in the code-examples around.

TSref - 52

Notice how the constants in the setup code is substituted. In the Object Browser, you can monitor the constants with or
without substitution. Also notice that the value "logo*.gif" was resolved to the resource "uploads/tf/logo_01.gif"

(Note: The "Constants display" function is not available if you select "Crop lines")

TSref - 53

Setup:
Toplevel objects:

Property: Data type: Description: Default:
types readonly Types (internal)

type=99 reserved for plaintext display

resources readonly Resources in list (internal)

sitetitle readonly SiteTitle (internal)

config ->CONFIG Global configuration.
These values are stored with cached pages which means they are also
accessible when retrieving a cached page.

constants ->CONSTANTS Site-specific constants, eg. a general email-adresse. These constants may
be substituted in the text throughout the pages. The substitution is done by
parseFunc. (Option: constants=1)

FEData ->FE_DATA Here you can configure how data submitted from the front-end should be
processed, which script and so on.

includeLibs Array of strings With this you can include php-files with function libraries for use in your
includescript in TYPO3.
Please see the PAGE-object, which has the same property.

Other reserved
TLO's:

plugin
tt_*
temp
styles
lib
_GIFBUILDER

These toplevel object names are reserved. That means you can risk
static_templates to use them:
“plugin” is used for rendering of special content like boards, ecommerce
solutions, guestbooks and so on. Normally set from static_templates.
Please see separate description below!
“tt_*”, eg tt_content (from “content (default)”) is used to render content
from tables.
“temp” and “styles” are used for conde-libraries you can copy during parse-
time, but they are not saved with the template in cache. "temp" / "styles"
are unset before the template is cached! Therefore use these names to
store temporary data.
“lib” can be used for a “library” of code, you can reference in TypoScript
(unlike “styles” which is unset)

... PAGE Start a new page

Example:
page = PAGE
page.typeNum = 1

Guidelines:
Good, general PAGE object names to use are such as:
page for the main page with content
frameset, frameset2 for framesets.
top, left, menu, right, bottom, border for top and menu frames etc.
This is just recommandations. Especially the name 'page' for the content
bearing page is very common.

... (whatever) If a toplevel-object is not a PAGE-object it could be used as a temporary
repository for setup. In this case you should use the "temp" or "styles"
objects.
"tt_..." is normally used to define the setup of content-records. Eg.
"tt_content" would be used for the tt_content-table as default. See the
"CONTENT"-cObject

[tsref:(TLO)]

The “plugin” TLO:
This is used for extensions in TYPO3 set up as frontend plugins. Typically you can set configuration properties of the plugin
here. Say you have an extension with the key “tx_myext” and it has a frontend plugin named “tx_myext_pi1” then you would
find the TypoScript configuration at the position “plugin.tx_myext_pi1” in the object tree!

Most plugins are USER or USER_INT objects which means that they have at least 1 or 2 reserved properties. Furthermore
this table outlines some other default properties. Generally system properties are prefixed with an underscore:

Property: Data type: Description: Default:
userFunc Property setting up the USER / USER_INT object of the plugin

includeLibs Property setting up the USER / USER_INT object of the plugin

TSref - 54

Property: Data type: Description: Default:
_CSS_DEFAULT_STYLE string Use this to have some default CSS styles inserted in the header

section of the document. Most likely this will provide a default
acceptable display from the plugin, but should ideally be cleared and
moved to an external stylesheet.
This value is for all plugins read by the pagegen script when making
the header of the document.

_DEFAULT_PI_VARS.
[piVar-key]

string Allows you to set default values of the piVars array which most
plugins are using (and should use) for data exchange with
themselves.
This works only if the plugin calls $this->pi_setPiVarDefaults().

_LOCAL_LANG.[lang-key].
[label-key]

string Can be used to override the default locallang labels for the plugin.

[tsref:plugin]

"CONFIG":
In typo3/sysext/cms/tslib/ this is known as $GLOBALS["TSFE"]->config["config"], thus the property "debug" below is
accessible as $GLOBALS["TSFE"]->config["config"]["debug"].

Property: Data type: Description: Default:
linkVars list HTTP_GET_VARS, which should be passed on with links in TYPO3. This

is compiled into a string stored in $GLOBALS["TSFE"]->linkVars

The values are rawurlencoded in PHP.

You can specify a range of valid values by appending a () after each value.
If this range does not match, the variable won't be appended to links. This
is very important to prevent that the cache system gets flooded with forged
values.

The range may containing one of these values:
• [a]-[b] - A range of allowed integer values
• int - Only integer values are allowed
• [a]|[b]|[c] - A list of allowed strings (whitespaces will be removed)
• /[regex]/ - Match against a regular expression (PCRE style)

Example:
config.linkVars = L, print
This will add "&L=[L-value]&print=[print-value]" to all links in TYPO3.

config.linkVars = L(1-3), print
Same as above, but “&L=[L-value]” will only be added if the current value
is 1, 2 or 3.

uniqueLinkVars boolean It might happen that TYPO3 generates links with the same parameter
twice or more. This is no problem because only the last parameter is used,
thus the problem is just a cosmetical one.

0

MP_defaults string Allows you to set a list of page id numbers which will always have a certain
“&MP=...” parameter added.

Syntax:
[id],[id],... : [MP-var] | [id],[id],... : [MP-var] | ...

Example:
config.MP_defaults = 36,37,48 : 2-207

This will by default add “&MP=2-207” to all links pointing to pages 36,37
and 48

MP_mapRootPoints list of
PIDs/string

Defines a list of ID numbers from which the MP-vars are automatically
calculated for the branch.
The result is used just like MP_defaults are used to find MP-vars if none
has been specified prior to the call to t3lib_tstemplate::linkData().
You can specify “root” as a special keyword in the list of IDs and that will
create a map-tree for the whole site (but this may be VERY processing
intensive if there are many pages!).
The order of IDs specified may have a significance; Any ID in a branch
which is processed already (by a previous ID root point) will not be
processed again.

MP_disableTypolinkClosest
MPvalue

boolean If set, the typolink function will not try to find the closest MP value for the
id.

TSref - 55

Property: Data type: Description: Default:
renderCharset string Charset used for rendering internally of the page content. It is highly

recommended that this value is the same as the charset of the content
coming from the main data source (eg. the database). Thus you don't
need to do any other conversion.
All strings from locallang files and locale strings are (and should be)
converted to "renderCharset" during rendering.

If you need another output charset than the render charset, see
"metaCharset" below.

If you set TYPO3_CONF_VARS['BE']['forceCharset'] that value is used by
default for "renderCharset". It is highly recommended to use
TYPO3_CONF_VARS['BE']['forceCharset'] for multilingual websites in
TYPO3. If you set that you don't have to worry about renderCharset and
metaCharset - the same charset is used in the whole system.

TYPO3_CONF_V
ARS[BE]
[forceCharset] if
found, otherwise
"iso-8859-1"

metaCharset string Charset used for the output document. For example in the meta tag:
<meta http-equiv="Content-Type" content="text/html; charset=...>

Is used for a) HTML meta-tag, b) HTTP header (unless disabled with .
disableCharsetHeader) and c) xhtml prologues (if available)

If renderCharset and metaCharset are different the output content is
automatically converted to metaCharset before output and likewise are
values posted back to the page converted from metaCharset to
renderCharset for internal processing. This conversion takes time of
course so there is another good reason to use the same charset for both.

value of
".renderCharset"

disableCharsetHeader boolean By default a header "content-type:text/html; charset..." is sent. This option
will disable that.

enableContentLengthHeader boolean If set, a header "content-length: [bytes of content]" is sent.

If a PHP_SCRIPT_EXT object is detected on the page or if the Backend
user is logged in, this is disabled. The reason is that the content length
header cannot include the lenght of these objects and the content-length
will cut of the lenght of the document in some browsers.

sendCacheHeaders boolean If set, TYPO3 will output cache-control headers to the client based mainly
on whether the page was cached internally. This feature allows client
browsers and/or reverse proxies to take load of TYPO3 websites.

The conditions for allowing client caching are:
● page was cached
● No *_INT or *_EXT objects were on the page (eg. USER_INT)
● No frontend user is logged in
● No backend user is logged in

If these conditions are met, the headers sent are:
● Last-Modified [SYS_LASTCHANGED of page id]
● Expires [expire time of page cache]
● Etag [md5 of content]
● Cache-Control: max-age: [seconds til expiretime]
● Pragma: public

In case caching is not allowed, these headers are sent to avoid client
caching:
● Cache-Control: private

Notice that enabling the browser caches means you have to consider how
log files are written. Because when a page is cached on the client it will not
invoke a request to the webserver, thus not writing the request to the log.
There should be ways to circumvent these problems but they are outside
the domain of TYPO3 in any case.

Tip: Enabling cache-control headers might confuse editors seeing old
content served from the browser cache. “Shift-Reload” will bypass both
browser- and reverse-proxy caches and even make TYPO3 regenerate the
page. Teach them that trick!

Thanks to Ole Tange, www.forbrug.dk for co-authoring this feature.

TSref - 56

Property: Data type: Description: Default:
sendCacheHeaders_onlyWh
enLoginDeniedInBranch

boolean If this is set, then cache-control headers allowing client caching is sent
only if user-logins are disabled for the branch. This feature makes it easier
to manage client caching on sites where you have a mixture of static
pages and dynamic sections with user logins.

The background problem is this: In TYPO3 the same URL can show
different content depending on whether a user is logged in or not. If a user
is logged in, cache-headers will never allow client caching. But if the same
URL was visited without a login prior to the login (allowing caching) the
user will still see the page from cache when logged in (and so thinks he is
not logged in anyway)! The only general way to prevent this is to have a
different URL for pages when users are logged in (which the extension
“realurl” can accomplish).

Another way to solve the problem is using this option in combination with
disabling and enabling logins in various sections of the site. In the page
records (“Advanced” page types) you can disable frontend user logins for
branches of the page tree. Since many sites only needs the login in a
certain branch of the page tree, disabling it in all other branches makes it
much easier to use cache-headers in combination with logins; Cache-
headers should simply be sent when logins are not allowed and never be
send when logins are allowed! Then there will never be problems with
logins and same-URLs.

doctype string If set, then a document type declaration (and an XML prologue) will be
generated. The value can either be a complete doctype or one of the
following keywords:

"xhtml_trans" for XHTML 1.0 Transitional doctype.
"xhtml_frames" for XHTML 1.0 Frameset doctype.
"xhtml_strict" for XHTML 1.0 Strict doctype.
"xhtml_basic" for XHTML basic doctype.
"xhtml_11" for XHTML 1.1 doctype.
"xhtml_2" for XHTML 2 doctype.
"none" for NO doctype at all.

Note that the keywords also change the way TYPO3 generates some of
the XHTML tags to ensure valid XML. If you set doctype to a string, then
you must also set config.xhtmlDoctype (see below).

See "config.htmlTag_setParams" and "config.htmlTag_langKey" for more
details on the effect on the html tag.

Default is a DOCTYPE like this:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

doctypeSwitch boolean /
string

If set, the order of <?xml...> and <!DOCTYPE...> will be reversed. This is
needed for MSIE to be standards compliant with XHTML.

Background:
By default TYPO3 outputs the XML/DOCTYPE in compliance with the
standards of XHTML. However a browser like MSIE will still run in “quirks-
mode” unless the <?xml> and <DOCTYPE> tags are ordered opposite.
But this breaks CSS validation...
With this option designers can decide for themselves what they want then.

If you want to check the compatibility-mode of your webbrowser you can
do so with a simple JavaScript that can be inserted on a TYPO3 page like
this:

page.headerData.1 = TEXT
page.headerData.1.value = <script>alert
(document.compatMode);</script>

If your browser has detected the DOCTYPE correctly it will report
“CSS1Compat”
If you are not running in compliance mode you will get some other
message. MSIE will report “BackCompat” for instance - this means it runs
in quirks-mode, supporting all the old “browser-bugs”.

TSref - 57

Property: Data type: Description: Default:
xhtmlDoctype string Sets the document type for the XHTML version of the generated page.

If config.doctype is set to a string then config.xhtmlDoctype must be set to
one of these keywords:

"xhtml_trans" for XHTML 1.0 Transitional doctype.
"xhtml_frames" for XHTML 1.0 Frameset doctype.
"xhtml_strict" for XHTML 1.0 Strict doctype.
"xhtml_basic" for XHTML basic doctype.
"xhtml_11" for XHTML 1.1 doctype.
"xhtml_2" for XHTML 2 doctype.

This is an example to use MathML 2.0 in an XHTML 1.1 document:

config.doctype (
<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0//EN"
"http://www.w3.org/Math/DTD/mathml2/xhtml-math11-
f.dtd">
)
config.xhtmlDoctype = xhtml_11

Default:
same as config.doctype if set to a keyword

xmlprologue string If empty (not set) then the default XML 1.0 prologue is set, when the
doctype is set to a known keyword (eg xhtml_11):

<?xml version="1.0" encoding="[config.renderCharset]">

If set to one of the know keywords then a standard prologue will be set:
“xml_10” XML 1.0 prologue (see above)
“xml_11” XML 1.1 prologue

If "none" then the default XML prologue is not set.
Any other string is used as the XML prologue itself.

htmlTag_setParams string Sets the attributes for the <html> tag on the page. If you set
"config.doctype" to a keyword enabling XHTML then some attributes are
already set. This property allows you to override any preset attributes with
you own content if needed.

Special: If you set it to "none" then no attributes will be set at any event.

Example:
config.htmlTag_setParams = xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en-US"

htmlTag_langKey string Allows you to set the language value for the attributes "xml:lang" and
"lang" in the <html> tag (when using "config.doctype = xhtml*").

The values must follow the format specified in IETF RFC 3066

Example:
config.htmlTag_langKey = en-US

en

htmlTag_dir string Sets text direction for whole document (useful for display of Arabic,
Hebrew pages).

Basically the value becomes the attribute value of "dir" for the <html> tag.

Values:
rtl = Right-To-Left (for Arabic / Hebrew)
ltr = Left-To-Right (Default for other languages)

Example:
config.htmlTag_dir = rtl

ATagParams <A>-
params

Additional parameters to all links in TYPO3 (excluding menu-links)

Example:
To blur links, insert:
onFocus="blurLink(this)"

setJS_openPic boolean If set, the openPic JavaScript function is forced to be included

setJS_mouseOver boolean If set, the over() and out() JavaScript functions are forced to be included

TSref - 58

Property: Data type: Description: Default:
removeDefaultJS boolean /

string
If set, the default JavaScript in the header will be removed.
The default JavaScript is the blurLink function and browser detection
variables.

Special case: if the value is "external" then the default JavaScript is
written to a temporary file and included from that file. See
"inlineStyle2TempFile" below.

Depends on the compatibility mode (see Tools>Install>Update wizard):
compatibility mode < 4.0: 0
compatibility mode >= 4.0: 1

Example:
config.removeDefaultJS = external
config.removeDefaultJS = 1

inlineStyle2TempFile boolean If set, the inline styles TYPO3 controls in the core are written to a file,
typo3temp/stylesheet_[hashstring].css, and the header will only contain
the link to the stylesheet.
The file hash is based solely on the content of the styles.

Depends on the compatibility mode (see Tools>Install>Update wizard):
compatibility mode < 4.0: 0
compatibility mode >= 4.0: 1

Example:
config.inlineStyle2TempFile = 1

meaningfulTempFilePrefix integer If set it will try to render a meaningful prefix before temporary image files.
Works with GIFBUILDER files (taking content from the Gifbuilder TEXT
objects), menus (taking the title of the menu item) and scaled images
(using original filename base).

ftu boolean If set, the "&ftu=...." GET-fallback identification is inserted.
"&ftu=[hash]" is always inserted in the links on the first page a user hits. If
it turns out in the next hit that the user has cookies enabled, this variable is
not set anymore as the cookies does the job. If no cookies is accepted the
"ftu" remains set for all links on the site and thereby we can still track the
user.

You should not set this feature if grabber-spiders like Teleport are
going to grab your site!
You should not set this feature if you want search-engines to index
your site (in conjunction with the simulateStaticDocuments feature!)

You can also ignore this feature if you're certain, website users will use
cookies.
 "ftu" means fe_typo_user ("fe" is "frontend").

false

mainScript string This lets you specify an alternative "mainScript" which is the document
that TYPO3 expects to be the default doc. This is used in form-tags and
other places where TYPO3 needs to refer directly to the main-script of the
application

index.php

pageGenScript resource Alternative page generation script for applications using index_ts.php for
initialization, caching, stating and so on. This script is included in the
global scope of index_ts.php-script and thus you may include libraries
here. Always use include_once for libraries.
Remember not to output anything from such an included script. All
content must be set into $TSFE->content. Take a look at
typo3/sysext/cms/tslib/pagegen.php

NOTE: This option is ignored if

$TYPO3_CONF_VARS["FE"]["noPHPscriptInclude"]=1;

is set in localconf.php.

typo3/sysext/cms/
tslib/pagegen.php

debug boolean If set any debug-information in the TypoScript code is output. Currently
this applies only to the menu-objects

message_page_is_being_ge
nerated

string Alternative HTML message that appears if a page is being generated.
Normally when a page is being generated a temporary copy is stored in
the cache-table with an expire-time of 30 seconds.

It is possible to use some keywords that are replaced with the
corresponding values. Possible keywords are: ###TITLE###,
###REQUEST_URI###

message_preview string Alternative message in HTML that appears when the preview function is
active!

TSref - 59

Property: Data type: Description: Default:
message_preview_workspac
e

string Alternative message in HTML that appears when the preview function is
active in a draft workspace. You can use sprintf() placeholders for
Workspace title (first) and number (second).

Examples:
config.message_preview_workspace = <div
class=”previewbox”>Displaying workspace named "%s" (number %s)!
</div>
config.message_preview_workspace = <div
class=”previewbox”>Displaying workspace number %2$s named "%
1$s"!</div>

locale_all string PHP: setlocale("LC_ALL", [value]);
value-examples: deutsch, de_DE, danish, portuguese, spanish, french,
norwegian, italian. See www.php.net for other value. Also on linux, look at /
usr/share/locale/

TSFE->localeCharset is intelligently set to the assumed charset of the
locale strings. This is used in stdWrap.strftime to convert locale strings to
the renderCharset of the frontend.

Example:
This will render dates in danish made with stdWrap/strftime:
locale_all = danish
locale_all = da_DK

sword_standAlone boolean Used by the parseFunc-substitution of search Words (sword):
If set, the words MUST be surrounded by whitespace in order to be
marked up.

sword_noMixedCase boolean Used by the parseFunc-substitution of search Words (sword):
If set, the words MUST be the exact same case as the search word was.

intTarget target default internal target. Used by typolink if no target is set

extTarget target default external target. Used by typolink if no extTarget is set _top

spamProtectEmailAddresses "ascii" /
-10 to 10

If set, then all email addresses in typolinks will be encrypted so spam
bots cannot detect them.

If you set this value to a number, then the encryption is simply an
offset of character values. If you set this value to "-2" then all
characters will have their ASCII value offset by "-2". To make this
possible, a little JavaScript code is added to every generated web page!
(It is recommended to set the value in the range from -5 to 1 since setting
it to >= 2 means a “z” is converted to “|” which is a special character in
TYPO3 tables syntax – and that might confuse columns in tables. Now
hardcoded range)

Alternatively you can set this value to the keyword "ascii". This way every
character of the "mailto:" address will be translated to a Unicode HTML
notation. Have a look at the example to see how this works.

Example:
mailto:a@b.c will be converted to
mailto:a@b.c
The big advantage of this method is that it doesn't need any JavaScript!

spamProtectEmailAddresses
_atSubst

string Substitute label for the at-sign (@). (at)

spamProtectEmailAddresses
_lastDotSubst

string Substitute label for the last dot in the email address.
Example: (dot)

Default: . (<= just
a simple dot)

forceTypeValue int Force the &type value of all TYPO3 generated links to a specific value
(except if overruled by local forceTypeValue values).
Useful if you run a template with special content at - say &type=95 - but
still wants to keep your targets neutral. Then you set your targets to blank
and this value to the type value you wish.

frameReloadIfNotInFrameset boolean If set, then the current page will check if the page object name (eg. “page”
or “frameset”) exists as “parent.[name]” (eg. “parent.page”) and if not the
page will be reloaded in top frame. This secures that links from search
engines to pages inside a frameset will load the frameset.
Works only with type-values different from zero.

jumpurl_enable boolean Jumpurl is a concept where external links are redirected from the
index_ts.php script, which first logs which url it was. This logging of
external links is only interesting if you use the internal stat-table in TYPO3.

0

jumpurl_mailto_disable boolean Disables the use of jumpUrl when linking to email-adresses. 0

TSref - 60

Property: Data type: Description: Default:
compensateFieldWidth double this floating point value will be used by the FORMS cObject to compensate

the length of the formfields text and input.
This feature is useful, if the page-option "smallFormFields" is set. In that
case Netscape renders formfields much longer than IE. If you want the two
browsers to display the same size formfields, use a value of approx "0.6"
for netscape-browsers.

Example:
[browser = netscape]
 config.compensateFieldWidth = 0.6
[global]

This option may be overridden in the FORMS-cObject.

includeLibrary resource This includes a phpfile.

incT3Lib_htmlmail boolean Include t3lib/class.t3lib_htmlmail.php

lockFilePath string This is used to lock paths to be "inside" this path.
Used by "filelist" in stdWrap

fileadmin/

noScaleUp boolean Normally images are scaled to the size specified via TypoScript. This also
forces small images to be scaled to a larger size. This is not always a
good thing.
If this property is set, images are not allowed to be scaled up in size. This
parameter clears the $this->mayScaleUp var of the class t3lib_stdgraphics
(often "gifbuilder").

USERNAME_substToken string The is the token used on the page, which should be substituted with the
current username IF a front-end user is logged in! If no login, the
substitution will not happen.

<!--
###USERNAME#
##-->

USERUID_substToken string The is the token used on the page, which should be substituted with the
current users UID IF a front-end user is logged in! If no login, the
substitution will not happen.
This value has no default value and only if you specify a value for this
token will a substitution process take place.

cache_period int, seconds The number of second a page may remain in cache.
This value is overridden by the value set in the page-record
(field="cache_timeout") if this value is greater than zero.

86400 (=24H)

cache_clearAtMidnight boolean With this setting the cache always expires at midnight of the day, the page
is scheduled to expire.

false

no_cache boolean If this is set to true, the page will not be cached. If set to false, it's ignored.
Other parameters may have set it to true of other reasons.

-

disableAllHeaderCode boolean If this is set, none of the features of the PAGE-object is processed and the
content of the page will be the result of the cObject array (1,2,3,4...) of the
PAGE-object. This means that the result of the cObject should include
everything from the <HTML> to the </HTML> tag !!
Use this feature in templates supplying other content-types than HTML.
That could be an image or a WAP-page!

false

additionalHeaders strings
divided by
"|"

This is additional headers. You separate each header by a vertical line "|".
Normally TYPO3 does not send any headers with the Header()-function in
PHP.

Examples:
Content-type: text/vnd.wap.wml
(this will sent a content-header for a WAP-site)

Content-type: image/gif | Expires: Mon, 26 Jul 1997 05:00:00 GMT
(this will sent a content-header for a GIF-file and a Expires header)

Location: www.typo3.com
(This redirects the page to www.typo3.com)

disablePageExternalUrl boolean If set, pages with doktype “External Url” will not trigger jumpUrl in TSFE.
This may help you to have external urls open inside you framesets.

stat boolean Enable stat logging at all. true

stat_typeNumList int/list List of pagetypes that should be registered in the statistics table, sys_stat.
If no types are listed, all types are logged.
Default is "0,1" which normally logs all hits on framesets and hits on
content keeping pages. Of course this depends on the template design.

0,1

stat_excludeBEuserHits boolean If set a pagehit is not logged if a user is logged in into TYPO3. false

stat_excludeIPList list of
strings

If the REMOTE_ADDR is in the list of IP-addresses, it's also not logged.
Can use wildcard, eg. “192.168.1.*”

stat_mysql boolean Enable logging to the MySQL table sys_stat. false

stat_apache boolean Enable logging to the logfile "stat_apache_logfile" false

TSref - 61

Property: Data type: Description: Default:
stat_apache_logfile filename This defines the name of the logfile where TYPO3 writes an Apache-style

logfile to. The location of the directory is defined by
$TYPO3_CONF_VARS["FE"]["logfile_dir"] which must exist and be
writable. It can be relative (to PATH_site) or absolute, but in any case it
must be within the regular allowed paths of TYPO3 (meaning for absolute
paths that it must be within the “lockRootDir” set up in
$TYPO3_CONF_VARS).

It is also possible to use date markers in the filename as they are provided
by the PHP function strftime(). This will enable a natural rotation of the
logfiles.

Example:
config.stat_apache_logfile = typo3_%Y%m%d.log

This will create daily log files (eg. typo3_20060321.log).

stat_apache_pagenames string The "pagename" simulated for apache.
Default: "[path][title]--[uid].html"
Codes:
[title] = inserts title, no special characters and shortend to 30 chars.
[uid] = the id
[alias] = any alias
[type] = the type (typeNum)
[path] = the path of the page.

stat_apache_notExtended boolean If true the logfile is NOT written in Apache extended format

stat_apache_noHost boolean If true the HTTP_HOST is - if available - NOT inserted instead of the IP-
address

stat_apache_niceTitle boolean /
string

If set, the URL will be transliterated from the renderCharset to ASCII (eg ä
=> ae, à => a, α "alpha" => a), which yields nice and readable page
titles in the log. All non-ASCII characters that cannot be converted will be
changed to underscores.

If set to “utf-8”, the page title will be converted to UTF-8 which results
in even more readable titles, if your log analyzing software supports it.

stat_apache_noRoot boolean If set, the root part (level 0) of the path will be removed from the path. This
makes a shorter name in case you have only a redundant part like "home"
or "my site".

stat_titleLen int 1-100 The length of the page names in the path written to logfile/database 20

stat_pageLen int 1-100 The length of the page name (at the end of the path) written to the
logfile/database.

30

simulateStaticDocuments boolean /
string

If set TYPO3 makes all links in another way than usual. This can be used
with Apache compiled with mod_rewrite and configured in httpd.conf
for use of this in the ".htaccess"-files.
Include this in the .htaccess file

RewriteEngine On
RewriteRule ^[^/]*\.html$ index.php

This means that any "*.html"-documents should be handled by index.php.
Now if is done, TYPO3 will interprete the url of the html-document like this:

[title].[id].[type].html
Title is optional and only usefull for the entries in the apache log-files. You
may omit both [title] and [type] but if title is present, type must also be
there!.

Example:
TYPO3 will interprete this as page with uid=23 and type=1 :

Startpage.23.1.html

TYPO3 will interprete this as the page with alias = "start" and the type is
zero (default):

start.html

Alternative option (PATH_INFO):
Instead of using the rewrite-module in apache (eg. if you're running
Windows!) you can use the PATH_INFO variable from PHP.
It's very simple. Just set simulateStaticDocuments to “PATH_INFO” and
you're up and running!

Also: See below, .absRefPrefix

Example (put in Setup-field of your template):
config.simulateStaticDocuments = PATH_INFO

default is defined
by a configuration
option in
localconf.php. It's
$TYPO3_CONF_
VARS["FE"]
["simulateStaticD
ocuments"] = 1;
This affects all
sites in the
database.
You can also set
this value to the
string
“PATH_INFO”

TSref - 62

Property: Data type: Description: Default:
simulateStaticDocuments_ad
dTitle

int If not zero, TYPO3 generates urls with the title in, limited to the first
[simulateStaticDocuments_addTitle] number of chars.

Example:
Startpage.23.1.html

instead of the default, "23.1.html", without the title.

simulateStaticDocuments_no
TypeIfNoTitle

boolean If set, then the type-value will not be set in the simulated filename if the
type value is zero anyways. However the filename must be without a title.

Example:
“Startpage.23.0.html” would still be “Startpage.23.0.html”
“23.0.html” would be “23.html” (that is without the zero)
“23.1.html” would still be “23.1.html”

simulateStaticDocuments_re
placementChar

string Word separator for URLs generated by simulateStaticDocuments. If set to
hyphen, this option allows search engines to index keywords in URLs.
Before TYPO3 4.0 this character was hard-coded to underscore.

Depends on the compatibility mode (see Tools>Install>Update wizard):
compatibility mode < 4.0: underscore “_”
compatibility mode >= 4.0: hyphen “-”

simulateStaticDocuments_do
ntRedirectPathInfoError

boolean Regarding PATH_INFO mode:
When a page is requested by “PATH_INFO” method it must be configured
in order to work properly. If PATH_INFO is not configured, the
index_ts.php script sends a location header to the correct page. However if
you better like an error message outputted, just set this option.

simulateStaticDocuments_p
Enc

string Allows you to also encode additional parameters into the simulated
filename.

Example:
You have a news-plugin. The main page has the url “Page_1.228.0.html”
but when one clicks on a news item the url will be
“Page_1.228.0.html?&tx_mininews_pi1[showUid]=2&cHash=b8d239c224”
instead.
Now, this URL will not be indexed by external search-engines because of
the query-string (everything after the “?” mark). This property avoids this
problem by encoding the parameters. These are the options:

Value set to “base64”:
This will transform the filename used to this value:
“Page_1.228+B6JnR4X21pbmluZXdzX3BpMVtzaG93VWlkXT0yJmNIYXN
oPWI4ZDIzOWMyMjQ_.0.html”. The querystring has simply been base64-
encoded (and some more...) and added to the HTML-filename (so now
external search-engines will find this!). The really great thing about this
that the filename is self-reliant because the filename contains the
parameters. The downside to it is the very very long filename.

Value set to “md5”:
This will transform the filename used to this value:
“Page_1.228+M57867201f4a.0.html”. Now, what a lovely, short filename!
Now all the parameters has been hashed into a 10-char string inserted into
the filename. At the same time an entry has been added to a cache table
in the database so when a request for this filename reaches the frontend,
then the REAL parameter string is found in the database! The really great
thing about this is that the filename is very short (opposite to the base64-
method). The downside to this is that IF you clear the database cache
table at any time, the URL here does NOT work until a page with the link
has been generated again (re-inserting the parameter list into the
database).

NOTICE: From TYPO3 3.6.0 the encoding will work only on parameters
that are manually entered in the list set by .
simulateStaticDocuments_pEnc_onlyP (see right below) or those
parameters that various plugins might allow in addition. This is to limit the
run-away risk when many parameters gets combined.

simulateStaticDocuments_p
Enc_onlyP

string A list of variables that may be a part of the md5/base64 encoded part of a
simulate_static_document virtual filename (see property in the row above).

Example:
simulateStaticDocuments_pEnc_onlyP = tx_maillisttofaq_pi1[pointer], L,
print

-> this will allow the "pointer" parameter for the extension "maillisttofaq" to
be included (in addition to whatever vars the extension sets itself) and
further the parameter "L" (could be language selection) and "print" (could
be print-version).

TSref - 63

Property: Data type: Description: Default:
content_from_pid_allowOutsi
deDomain

boolean Using the “Show content from this page instead” feature allows you to
insert content from the current domain only. Setting this option will allow
content included from anywhere in the page tree!

absRefPrefix string If this value is set, then all relative links in TypoScript are prepended with
this string. Used to convert relative paths to absolute paths.

Note: This values is automatically set to the dirname of the index.php
script in case simulateStaticDocuments is set to “PATH_INFO”.
If you're working on a server where you have both internal and external
access, you might to yourself a favour and set the absRefPrefix to the url
and path of you site, eg. http://www.typo3.com/. If you do not, you risk to
render pages to cache from the internal network and thereby prefix image-
references and links with a non-accesible path from outside.

noPageTitle integer If you only want to have the sitename (from the template record) in your
<title> tag, set this to 1. If the value is 2 then the <title> tag is not printed
at all.
Please take note that this tag is required for XHTML compliant output, so
you should only disable this tag if you generate it manually already.

0

pageTitleFirst boolean If set (and the page title is printed) then the page-title will be printed
BEFORE the template title.

titleTagFunction function-
name

Passes the default <title>-tag content to this function. No typoScript
parameters are passed though.

headerComment string The content is added before the “TYPO3 Content Management
Framework” comment in the <head> section of the page. Use this to insert
a note like that “Programmed by My-Agency” ...

language string Language key. See stdWrap.lang for more information.
Select between:
English (default) = [empty]
Danish = dk
German = de
Norwegian = no
Italian = it
etc...

Value must correspond with the key used for backend system language if
there is one. See inside config_default.php or look at the translation page
on TYPO3.org for the official 2-byte key for a given language. Notice that
selecting the official key is important if you want labels in the correct
language from "locallang" files.
If the language you need is not yet a system language in TYPO3 you can
use an artificial string of your choice and provide values for it via the
TypoScript template where the property “_LOCAL_LANG” for most plugins
will provide a way to override/add values for labels. The keys to use must
be looked up in the locallang-file used by the plugin of course.

language_alt string If “config.language” (above) is used, this can be set to another language
key which will be used for labels if a label was not found for the main
language. For instance a brazil portuguese website might specify “pt” as
alternative language which means the portuguese label will be shown if
none was available in the main language, brazil portuguese. This feature
makes sense if one language is incompletely translated and close to
another language.

sys_language_uid int This value points to the uid of a record from the “sys_language” table and
if set, this means that various parts of the frontend display code will select
records which are assigned to this language. See ->SELECT

Internally, the value is depending on whether a Alternative Page Language
record can be found with that language. If not, the value will default to zero
(default language) except if “sys_language_mode” is set to a value like
“content_fallback”.

TSref - 64

Property: Data type: Description: Default:
sys_language_mode string Setting various modes of handling localization.

The syntax is "[keyword] ; [value]".

Possible keywords are:

[default] - The system will look for a translation of the page (from
“Alternative Page Language” table) and if it is not found it will fall back to
the default language and display that.

content_fallback - [Recommended] The system will always operate with
the selected language even if the page is not translated with a page
overlay record. This will keep menus etc. translated. However, the content
on the page can still fall back to another language, defined by the value of
this keyword, eg. "content_fallback ; 1,0" to fall back to the content of
sys_language_uid 1 and if that is not present either, to default (0)

strict - The system will report an error if the requested translation does not
exist. Basically this means that all pages with gray background in the
Web>Info / Localization overview module will fail (they would otherwise fall
back to default language in one or another way)

ignore - The system will stay with the selected language even if the page
is not translated and there's no content available in this language, so you
can handle that situation on your own then.

sys_language_overlay boolean /
keyword

If set, records from certain tables selected by the CONTENT cObject using
the “languageField” setting will select the default language (0) instead of
any language set by sys_language_uid / sys_language_mode. In addition
the system will look for a translation of the selected record and overlay
configured fields.
The requirements for this is that the table is configured with
“languageField” and “transOrigPointerField” in the [ctrl] section of $TCA.
Also, exclusion of certain fields can be done with the “l10n_mode” directive
in the field-configuration of $TCA.

For backend administration this requires that you configure the
“Web>Page” module to display content elements accordingly; That each
default element is shown and next to it any translation found. This
configuration can be done with Page TSconfig for a section of the website
using the object path “mod.web_layout.defLangBinding = 1”.

Keyword:
hideNonTranslated : If this keyword is used a record that has no
translation will not be shown. The default is that records with no translation
will show up in the default language.

sys_language_softMergeIfNo
tBlank

string Setting additional “mergeIfNotBlank” fields from TypoScript.

Background:
In TCA you can configure “l10n_mode” - localization mode - for each field.
Two of the options affect how the frontend displays content; The values
“exclude” and “mergeIfNotBlank” (see “TYPO3 Core API” document for
details). The first (“exclude”) simply means that the field when found in a
translation of a record will not be overlaid the default records field value.
The second (“mergeIfNotBlank”) means that it will be overlaid only if it has
a non-blank value.
Since it might be practical to set up fields for “mergeIfNotBlank” on a per-
site basis this options allows you to override additional fields from tables.

Syntax:
 [table]:[field], [table]:[field], [table]:[field], ...

Example:
config.sys_language_softMergeIfNotBlank =
tt_content:image , tt_content:header

This setting means that the header and image field of content elements
will be used from the translation only if they had a non-blank value. For the
image field this might be very practical because it means that the image(s)
from the default translation will be used unless other images are inserted!

sys_language_softExclude string Setting additional "exclude" flags for l10n_mode in TCA for frontend
rendering. Works exactly like sys_language_softMergeIfNotBlank (see that
for details - same Syntax!).

Fields set in this property will override if the same field is set for
"sys_language_softMergeIfNotBlank".

TSref - 65

Property: Data type: Description: Default:
typolinkCheckRootline boolean If set, then every “typolink” is checked whether it's linking to a page within

the current rootline of the site.
If not, then TYPO3 searches for the first found domain record (without
redirect) in that rootline from out to in.
If found (another domain), then that domain is prepended the link, the
external target is used instead and thus the link jumps to the page in the
correct domain.

typolinkLinkAccessRestricted
Pages

integer
(page id) /
keyword
“NONE”

If set, typolinks pointing to access restricted pages will still link to the page
even though the page cannot be accessed. If the value of this setting is an
integer it will be interpreted as a page id to which the link will be directed.
If the value is “NONE” the original link to the page will be kept although it
will generate a page-not-found situation (which can of course be picked up
properly by the page-not-found handler and present a nice login form).

See “showAccessRestrictedPages” for menu objects as well (similar
feature for menus)

Example:
config.typolinkLinkAccessRestrictedPages = 29
config.typolinkLinkAccessRestrictedPages_addParams =
&return_url=###RETURN_URL###&pageId=###PAGE_ID###

Will create a link to page with id 29 and add GET parameters where the
return URL and original page id is a part of it.

typolinkLinkAccessRestricted
Pages_addParams

string See “typolinkLinkAccessRestrictedPages” above

insertDmailerBoundaries boolean If set, boundary marks will be set around all records inserted on the page
with cObjects CONTENT and RECORD. They are inserted as HTML-
comments and do no harm.
Used by the Direct Mail module in TYPO3 to segmentize a page by
categories.

notification_email_urlmode string This option allows you to handle URL's in plain text emails so long URLS
of more than 76 chars are not broken. This option can be either empty or
“76” or “all”.
If the string is blank, all links in plaintext emails are untouched.
If it's set to 76 then all links longer then 76 characters are stored in the
database and a hash is sent in the GET-var ?RDCT=[md5/20] to the
index.php script which finds the proper link in the database and issues a
location header (redirection).
If the value is “all” then ALL “http://” links in the message are converted.

notification_email_encoding string This sets the encoding of plaintext emails (notification messages). The
default encoding is “quoted-printable”. But setting this to eg. “base64” will
encode the content with base64 encoding.

Values possible:
base64
quoted-printable
8bit

notification_email_charset string Alternative charset for the notification mails. ISO-8859-1

admPanel boolean /
->ADMPAN
EL
properties

If set, the admin panel appears in the bottom of pages.

NOTE: In addition the panel must be enabled for the user as well, using
the TSconfig for the user! See adminguide documentation.

SEE: Admin Panel section

beLoginLinkIPList [IP-number] If set and REMOTE_ADDR matches one of the listed IP-numbers (Wild-
card, *, allowed) then a link to the typo3/ login scrip with redirect pointing
back to the page is shown.

NOTE: beLoginLinkIPList_login and/or beLoginLinkIPList_logout (see
below) must be defined if the link should show up!

beLoginLinkIPList_login HTML HTML code wrapped with the login link, see 'beLoginLinkIPList'

Example:
<HR>LOGING

beLoginLinkIPList_logout HTML HTML code wrapped with the logout link, see above

index_enable boolean Enables cached pages to be indexed.

index_externals boolean If set, external media linked to on the pages is indexed as well.

index_descrLgd int This indicates how many chars to preserve as description for an indexed
page. This may be used in the search result display.

200

TSref - 66

Property: Data type: Description: Default:
xhtml_cleaning string Tries to clean up the output to make it XHTML compliant and a bit more.

THIS IS NOT COMPLETE YET, but a “pilot” to see if it makes sense
anyways. For now this is what is done:

What it does at this point:
- All tags (img,br,hr) is ended with "/>" - others?
- Lowercase for elements and attributes
- All attributes in quotes
- Add "alt" attribute to img-tags if it's not there already.

What it does NOT do (yet) according to XHTML specs.:
- Wellformedness: Nesting is NOT checked
- name/id attribute issue is not observed at this point.
- Certain nesting of elements not allowed. Most interesting, <PRE> cannot
contain img, big,small,sub,sup ...
- Wrapping scripts and style element contents in CDATA - or alternatively
they should have entitites converted.
- Setting charsets may put some special requirements on both XML
declaration/ meta-http-equiv. (C.9)
- UTF-8 encoding is in fact expected by XML!!
- stylesheet element and attribute names are NOT converted to lowercase
- ampersands (and entities in general I think) MUST be converted to an
entity reference! (&s;). This may mean further conversion of non-tag
content before output to page. May be related to the charset issue as a
whole.
- Minimized values not allowed: Must do this: selected="selected"

Please see the class t3lib_parsehtml for details.
You can enable this function by the following values:

all = the content is always processed before it may be stored in cache.
cached = only if the page is put into the cache,
output = only the output code just before it's echoed out.

prefixLocalAnchors string
keyword

If set to one of the keywords, the content will have all local anchors in links
prefixed with the path of the script. Basically this means that
will be transformed to . This
procedure is necessary if the <base> tag is set in the script (eg. if “realurl”
extension is used to produce Speaking URLs).

Keywords are the same as for “xhtml_cleaning”, see above.

disablePrefixComment boolean If set, the stdWrap property “prefixComment” will be disabled, thus
preventing any revealing and spaceconsuming comments in the HTML
source code.

baseURL string This writes the <base> tag in the header of the document. Set this to the
value that is expected to be the URL, and append a “/” to the end of the
string.

Example:
config.baseURL = http://typo3.org/sub_dir/

tx_[extension key with no
underscores]_[*]

- Configuration space for plugins

[tsref:config/->CONFIG]

"CONSTANTS":
Property: Data type: Description: Default:

Array... string Constants.

Examples:
.EMAIL = email@email.com
Now if parseFunc anywhere is configured with constants=1 then all cases
of the string ###EMAIL### will be substituted in the text.
see ->parseFunc

[tsref:constants]

"PAGE":
Pages are referenced by two main values. The "id" and "type".

The "id" points to the uid of the page (or the alias). Thus the page is found.

The "type" is used to define how the page should be rendered. This is primarily used with framesets. Here the frameset
normally has the type=0 (or not set) and the documents in the frameset would be defined with another type, eg. type=1 for
the content-page.

You should explore the framesets of the TYPO3-sites around. Also look in the standard-templates for framesets.

TSref - 67

It's a good habit to use type=1 for the main-page of a website with frames. With no-frames sites type is normally zero.

Another good habit is to use "page" as the toplevel-objectname for the content-page on a website.

Most of this codes is executed in the PHP-script pagegen.php

Property: Data type: Description: Default:
typeNum typeNumber This decides the the typeId of the page. The value defaults to 0 for the

first
found PAGE object, but it MUST be set and be unique as soon you use
more than one such object (watch this if you use frames on your page)!

0

1,2,3,4... cObject

wrap wrap Wraps the content of the the cObject array

stdWrap ->stdWrap Wraps the content of the the cObject array with stdWrap options

bodyTagCObject cObject This is default bodytag overridden by “.bodyTag” if that is set.

bodyTag <tag> Bodytag on the page

Example:
<body bgcolor="{$bgCol}">

<body
bgcolor="#FFFFF
F">

headTag <tag> Head-tag if alternatives are wanted <head>

bodyTagMargins int margins in the bodytag.

Property:
.useCSS = 1 (boolean) - will set a “BODY {margin: ...}” line in the in-
document style declaration - for XHTML compliance.

Example:
value 4
adds leftmargin="4" topmargin="4" marginwidth="4" marginheight="4"
to the bodyTag.

bodyTagAdd string This content is added to the end of the bodyTag.

bgImg imgResource Background image on the page. This is automatically added to the
body-tag.

frameSet ->FRAMESET if any properties is set to this property, the page is made into a
frameset.

meta ->META

shortcutIcon resource Favicon of the page. Create a reference to an icon here!
Browsers that support favicons display them in the browser's address
bar, next to the site's name in lists of bookmarks, and next to the page's
title in a Tabbed Document Interface.

Note:
This must be a valid ".ico"-file (iconfile)

headerData ->CARRAY Inserts content in the header-section. Could be JavaScripts, meta-tags,
other stylesheet references.
Is inserted after all the style-definitions.

config ->CONFIG configuration for the page. Any entries override the same entries in the
toplevel-object "config".

includeJS.[array] resource Inserts one or more (Java)Scripts in <script> tags.

The file definition must be a valid "resource" datatype, otherwise nothing
is inserted.

Each file has optional properties:
.style - setting the MIME type of the script (default: text/javascript)

Example:
includeJS {
 file1 = fileadmin/helloworld.js
 file1.type = application/x-javascript
 file2 = javascript_uploaded_to_template*.js
}

TSref - 68

Property: Data type: Description: Default:
includeLibs array of strings With this you may include php-files. This does the same as

"includeLibrary" in ->CONFIG but this can include more than one file.
These files are included after the file of includeLibrary.

NOTE:
The toplevel object "includeLibs" and the scripts defined with this
property is added to each other. Script-keys (that is the "array of
strings"-value, like below "ts_address") from this property of the page
overrides any scripts-keys from the toplevel "includeLibs" property!
The script-filenames are of the datatype "resource".

Example:
includeLibs.ts_address = lib_filename.php
includeLibs.ts_shop = lib_filename.php

Please do not use the prefix shown above ("ts_") as this will probably be
used by the standard TYPO3 libraries that will appear in the future.

CSS Stylesheets:

stylesheet resource Inserts a stylesheet in the <HEAD>-section of the page;
<link rel="stylesheet" href="[resource]">

includeCSS.[array] resource Inserts a stylesheet (just like the .stylesheet property) by allows to
setting up more than a single stylesheet, because you can enter files in
an array.

The file definition must be a valid "resource" datatype, otherwise nothing
is inserted.

Each file has optional properties:
.media - setting the media attribute of the <style> tag.
.title - setting the title of the <style> tag.
.alternate - If set (boolean) then the rel-attribute will be "alternate
stylesheet"
.import - If set (boolean) then the @import way of including a stylesheet
is used instead of <link>

Example:
includeCSS {
 file1 = fileadmin/mystylesheet1.css
 file2 = stylesheet_uploaded_to_template*.css
 file2.title = High contrast
 file2.media = print
}

CSS_inlineStyle string This value is just passed on as inline css (in-document css
encapsulated in <style>-tags)

insertClassesFromRT
E

boolean If set, the classes for the Rich Text Editor configured in Page TSconfig
is inserted in as the first thing in the Style-section right after the setting
of the stylesheet.

.add_mainStyleOverrideDefs = [* / list of tags] - will add all the
“RTE.default. mainStyleOverride_add” - tags configured as well.

Might be deprecated soon. Most likely the RTE should be configured by
the stylesheet instead. Stay tuned...

noLinkUnderline boolean Disables link-underlining. Uses in-document stylesheet.

Deprecated. Use stylesheet instead.

hover HTML-color The color of a link when the mouse moves over it! (only MSIE). Uses in-
document stylesheet.

Deprecated. Use stylesheet instead.

hoverStyle string Additional style information to the hover-color.

Example:
page.hoverStyle = font: bold; text-decoration: none;

Deprecated. Use stylesheet instead.

TSref - 69

Property: Data type: Description: Default:
smallFormFields boolean Renders formfields like textarea, input and select-boxes small with

"verdana size 1" font.
Uses in-document stylesheet.

Tip:
Use this together with the config-option "compensateFieldWidth" set to
"0.6" for netscape-browsers in order to render the small form fields in
the same width!

Deprecated. Use stylesheet instead.

adminPanelStyles boolean Will include CSS styles for the Admin Panel.
[tsref:(page)]

TSref - 70

"FE_DATA":
Property: Data type: Description: Default:

array of tableNames ->FE_TABLE
[tsref:FEData]

"FE_TABLE":
Property: Data type: Description: Default:

default.[field] string This property is in charge of which default-values is used for the table:

Example:
This defines the default values used for new records. These values will
be overridden with any value submitted instead (as long as the
submitted fields are allowed due to "allowNew")
default {
 subject = This is the default subject value!
 hidden = 1
 parent = 0
}

allowNew.[field] string This property is in charge of which fields that may be written from the
frontend.

Example:
This defines that subject is a field, that may be submitted from the
frontend. If a value is not submitted, subject is filled with the default
value (see above).
The field "hidden" on the other hand cannot be changed from the
frontend. "hidden" will gain the value from the default definition (see
above). If fields are set to "0" (zero) it's the same as if they were not
defined in this array.

allowNew {
 subject = 1
 hidden = 0
}

allowEdit.[field] string Same as above ("allowNew") but this controls which fields that may be
written in case of an update of a record (and not a new submission)
Please pay attension to the property below! ("overrideEdit")

overrideEdit.[field] string This works like default-values above but is values inserted after the
submitted values has beed processed. This means that opposite to
default-values overwritten by the submitted values, these values
override the submitted values.

Example:
In this case overrideEdit secures that if a user updates his record (if he
"own" it) the "hidden"-field will be set no matter what.

overrideEdit {
 hidden = 1
}

userIdColumn string (field) This is a string that points to the column of a record where the user-id of
the current fe_user should be inserted. This fe_user-uid is
inserted/updated both by "new" and "edit"

autoInsertPID boolean Works with new records: Insert automatically the PID of the page,
where the submitted data is sent to. Any "pid" supplied from the
submitted data will override. This is for convenience.

processScript resource Include-script to be used for processing of incoming data to the table.
The script is included from a function in the class tslib_fetce
This is the really important option, because whether or not you are
going to utilize the "cleaning"/"authorization" features of the properties
above depend on how you write your script to process data and put it in
the database.
A very good example is to look at "media/scripts/guest_submit.inc",
included from static_template "plugin.tt_guest" (Used for the default
guestbook feature)

separator string Separator character used when the submitted data is an array from eg.
a multiple selector box.

chr(10)
(linebreak)

doublePostCheck string (fieldname) Specifies a fieldname (integer) into which an integer-hash compiled of
the submitted data is inserted. If the field is set, then submissions are
checked whether another record with this value already exists. If so, the
record is NOT inserted, because it's expected to be a “double post”
(posting the same data more than once)

[tsref:FEData.(tablename)/->FE_TABLE]

TSref - 71

"FRAMESET":
Property: Data type: Description: Default:

1,2,3,4... frameObj Configuration of frames and nested framesets.

cols <frameset>-data:cols Cols

rows <frameset>-data:rows Rows

params <frameset>-params Example:
border="0" framespacing="0" frameborder="NO"

[tsref:(page).frameSet/->FRAMESET]

"FRAME":
Property: Data type: Description: Default:

obj pointer to toplevel
object-name

toplevel object-name of a PAGE / FRAMESET

Example:
"left", "page", "frameset"

options url-parameters Example:
print=1&othervar=anotherthing
would add '&print=1&othervar=anotherthing' to the ".src"-content (if not
".src" is set manually!!)

params <frame>-params Example:
scrolling="AUTO" noresize frameborder="NO"

name <frame>-data:name Manually set name of frame

NOTE: Is set automatically and should not be overridden under normal
conditions!

value of ".obj"

src <frame>-data:src Manually set the src of the frame

NOTE: Is set automatically and should not be overridden under normal
conditions!

could be
index.php?$id&$t
ype

[tsref:(page).frameSet.(number)/->FRAMESET.(number)]

Example of a simple frameset with a topframe and content-frame:
frameset = PAGE
frameset.typeNum = 0
page = PAGE
page.typeNum = 1
top = PAGE
top.typeNum = 3
frameset.frameSet.rows = 150,*
frameset.frameSet.params = border="0" framespacing="0" frameborder="NO"
frameset.frameSet {
 1 = FRAME
 1.obj = top
 1.params = scrolling="NO" noresize frameborder="NO" marginwidth="0" marginheight="0"
 2 = FRAME
 2.obj = page
 2.params = scrolling="AUTO" noresize frameborder="NO"
}

"META":
Property: Data type: Description: Default:

Array... string /stdWrap Metatags
If value is empty (after trimming) the metatag is not generated.
If the "key" (eg. "REFRESH" or "DESCRIPTION") is "REFRESH"
(caseinsensitive), then the "http-equiv"-attribute is used in the metatag
instead of "name".

Examples:
.REFRESH = [sec]; [url, leave blank for same page]
.DESCRIPTION = This is the description of the content in this document
.KEYWORDS = This is the keywords...

[tsref:->META]

TSref - 72

"CARRAY":
Property: Data type: Description: Default:

1,2,3,4... cObject This is a numerical "array" of content-objects (cObjects). The order by
which you specific the objects is not important as the array will be
sorted before it's parsed!

Occational properties:

(stdWrap
properties...)

NOTE: This applies ONLY if "CARRAY /stdWrap" is set to be data type
If you specify any non-integer properties to a CARRAY, stdWrap will be
invoked with all properties of the CARRAY.

Example:
This will return 'This will be rendered before "10"testing'
10 = TEXT
10.value = testing
5 = HTML
5.value = This will be rendered before "10"
wrap = |

(TDParams) <TD>-params NOTE: This applies ONLY if "CARRAY +TDParams" is set to be data
type
This property is used only in some cases where CARRAY is used.
Please look out for a note about that in the various cases.

[tsref:->CARRAY]

TSref - 73

Content Objects (cObject)
PHP-information:
The content objects (cObjects) are primarily controlled by the PHP-script "typo3/sysext/cms/tslib/content.php". The PHP-
class is named "tslib_cObj" and often this is also the variable-name of the objects ($cObj)

The $cObj in PHP has an array, $this->data, which holds records of various kind. See data type "getText".

This record is normally "loaded" with the record from a table depending on the situation. Say if your creating a menu it's often
loaded with the page-record of the actual menuitem or if it's about content-rendering it'll be the content-record.

IMPORTANT NOTE :
When dealing with "cObjects", you're allowed to use a special syntax in order to reuse cObjects without actually creating a
copy. This has the advantage of minimizing the size of the cached template. But on the other hand it doesn't give you the
flexibility of overriding values.

This example will show you how it works:

#
Temporary objects are defined:
#
lib.stdheader = COA
lib.stdheader {
 stdWrap.wrapAlign.field = header_position
 stdWrap.typolink.parameter.field = header_link
 stdWrap.fieldRequired = header
 1 = TEXT
 1.current = 1
 1.fontTag = {$content.wrap.header1}
 stdWrap.space = {$content.headerSpace}
}

CType: header
#
tt_content.header = COA
tt_content.header {
 10 < lib.stdheader
 10.stdWrap.space >
 20 = TEXT
 20.field = subheader
 20.fontTag = {$content.wrap.subheader1}
}

#
CType: bullet
#
tt_content.bullets = COA
tt_content.bullets {
 10 = < lib.stdheader
 20 < styles.content.bulletlist_gr
}

Comment: First lib.stdheader is defined. This is (and must be) a cObject ! (in this case, COA).

Now lib.stdheader is copied to tt_content.header.10 with the "<" operator. This means that an actual copy of lib.stdheader is
created at parsetime.

But this is not the case with tt_content.bullets.10. Here lib.stdheader is just pointed to and lib.stdheader will be used as the
cObject at runtime.

The reason why lib.stdheader was copied in the first case is the fact that it's needed to unset ".stdWrap.space" inside the
cObject ("10.stdWrap.space >"). This could NOT be done in the second case where only a pointer is created.

NOTE:
If lib.stdheader was temp.stdheader instead, the pointer would not work! This is due to the fact that the runtime-reference
would find nothing in "temp." as this is unset before the template is stored in cache!

This goes for "temp." and "styles." (see the toplevel object definition elsewhere)

TSref - 74

Overriding values anyway:

Although you can not override values TypoScript-style (using the operators and all) the properties of the object which has the
reference will be merged with the config of the reference.

Example:
page.10 = TEXT
page.10.value = kasper
page.10.case = upper
page.20 = < page.10
page.20.case = lower
page.20.value >
page.20.field = pages

The result is this config:

Notice that .value was not cleared (the red line), because it's simply two arrays which are joined:

So hence the red line in the above example is useless.

HTML:
Property: Data type: Description: Default:

value HTML /stdWrap Raw HTML-code.
[tsref:(cObject).HTML]

Example:
10 = HTML
10.value = This is a text in uppercase
10.value.case = upper

Example:
10 = HTML
10.value.field = bodytext
10.value.br = 1

TEXT:
TEXT is very similar to the cObject "HTML". But the stdWrap is on the very rootlevel of the object. This is non-standard.
Check the example.

Property: Data type: Description: Default:
value value text, wrap with stdWrap properties

(stdWrap
properties...)

[tsref:(cObject).TEXT]

Example:
10 = TEXT
10.value = This is a text in uppercase

TSref - 75

10.case = upper

Example:
10 = TEXT
10.field = bodytext
10.br = 1

COBJ_ARRAY (COA, COA_INT):
This cObject has the alias COA. You can use this instead of COBJ_ARRAY.

You can also create this object as a COA_INT in which case it works exactly like the PHP_SCRIPT_INT object does: It's
rendered non-cached! The COA_INT provides a way to utilize this feature not only with PHP_SCRIPT cObjects but any
cObject.

Property: Data type: Description: Default:
1,2,3,4... cObject

if ->if if "if" returns false the COA is NOT rendered

wrap wrap

stdWrap ->stdWrap

includeLibs list of resource (This property is used only if the object is COA_INT!, See
introduction.)
This is a comma-separated list of resources that are included as PHP-
scripts (with include_once() function) if this script is included.
This is possible to do because any include-files will be known before the
scripts are included. That's not the case with the regular PHP_SCRIPT
cObject.

[tsref:(cObject).COA/(cObject).COA_INT/(cObject).COBJ_ARRAY]

Example:
temp.menutable = COBJ_ARRAY
temp.menutable {
 10 = HTML
 10.value = <table border=0 cellpadding=0 cellspacing=0>
 20 = HMENU
 20.entryLevel = 0
 20.1 = GMENU
 20.1.NO {
 wrap = <tr><td> | </td></tr>
 XY = {$menuXY}
 backColor = {$bgCol}
 20 = TEXT
 20 {
 text.field = title
 fontFile = media/fonts/hatten.ttf
 fontSize = 23
 fontColor = {$menuCol}
 offset = |*| 5,18 || 25,18
 }
 }

 30 = HTML
 30.value = </table>
}

TSref - 76

FILE:
PHP-function: $this->fileResource()

Property: Data type: Description: Default:
file resource If the resource is jpg,gif,jpeg,png the image is inserted as an image-tag.

Al other formats is read and inserted into the HTML-code.
The maximum filesize of documents to be read is set to 1024 kb internally!

linkWrap linkWrap (before ".wrap")

wrap wrap

altText
titleText

string /stdWrap For output only!

If no titltext is specified, it will use the alttext instead
If no alttext is specified, it will use an empty alttext

longdescURL string /stdWrap For output only!

"longdesc" attribute (URL pointing to document with extensive details
about image).

[tsref:(cObject).FILE]

Example:
In this example a page is defined, but the content between the body-tags comes directly from the file "gs.html":
page.10 = FILE
page.10.file = fileadmin/gs/gs.html

IMAGE:
PHP-function: $cObj->cImage();

The array $GLOBALS["TSFE"]->lastImageInfo is set with the info-array of the returning image (if any) and contains width,
height and so on.

Property: Data type: Description: Default:
file imgResource

params -params

border integer Value of the “border” attribute of the image tag. 0

altText
titleText

(alttext)

string /stdWrap If no titltext is specified, it will use the alttext instead
If no alttext is specified, it will use an empty alttext

("alttext" is the old spelling of this attribute. It will be used only if "altText"
does not specify a value or properties)

longdescURL string /stdWrap "longdesc" attribute (URL pointing to document with extensive details
about image).

linkWrap linkWrap (before ".wrap")

imageLinkWrap boolean/
->imageLinkWrap

NOTE: ONLY active if linkWrap is NOT set and file is NOT GIFBUILDER
(as it works with the original imagefile)

if ->if if "if" returns false the image is not shown!

wrap wrap

stdWrap ->stdWrap
[tsref:(cObject).IMAGE]

Example:
 10 = IMAGE
 10.file = toplogo*.gif
 10.params = hspace=5
 10.wrap = |

IMG_RESOURCE:
Returns only the image-reference, possibly wrapped with stdWrap. May be used for putting background images in tables or
table-rows or to import a image in your own include-scripts.

The array $GLOBALS["TSFE"]->lastImgResourceInfo is set with the info-array of the resulting image resource (if any) and
contains width, height and so on.

TSref - 77

Property: Data type: Description: Default:
file imgResource

stdWrap ->stdWrap
[tsref:(cObject).IMG_RESOURCE]

CLEARGIF:
Inserts a transparent gif-file.

Property: Data type: Description: Default:
height -data:height /

stdWrap
1

width -data:width /
stdWrap

1

wrap wrap |

[tsref:(cObject).CLEARGIF]

Example:
 20 = CLEARGIF
 20.height=20

CONTENT:
Generating content.

The register-key SYS_LASTCHANGED is updated with the tstamp-field of the records selected which has a higher value
than the current.

Property: Data type: Description: Default:
select ->select The SQL-statement is set here!

table tableName The table, the content should come from.
In standard-configurations this will be "tt_content"
NOTE: Only tables allowed are “pages” or tables prefixed with one of
these: “tt_”, “tx_”, “ttx_”, “fe_”, “user_”

renderObj cObject < [tablename]

slide integer If set and no content element is found by the select command, then the
rootLine will be traversed back until some content is found.

Possible values are “-1” (slide back up to the siteroot), “1” (only the current
level) and “2” (up from one level back).

Use -1 in combination with collect.

.collect (integer): If set, all content elements found on current and parent
pages will be collected. Otherwise, the sliding would stop after the first hit.
Set this value to the amount of levels to collect on, or use “-1” to collect up
to the siteroot.
.collectFuzzy (boolean): Only useful in collect mode. If no content
elements have been found for the specified depth in collect mode, traverse
further until at least one match has occurred.
.collectReverse (boolean): Change order of elements in collect mode. If
set, elements of the current page will be on the bottom.

wrap wrap Wrap the whole content-story...

stdWrap ->stdWrap
[tsref:(cObject).CONTENT]

Example (of the CONTENT-obj):
 1 = CONTENT
 1.table = tt_content
 1.select {
 pidInList = this
 orderBy = sorting
 }

Example (of record-renderObj's):
// Configuration for records with the typeField-value (often "CType") set to "header"
tt_content.header.default {
 10 = TEXT

TSref - 78

 10.field = header

}
// Configuration for records with the typeField-value (often "CType") set to "bullets"
// If field "layout" is set to "1" or "2" a special configuration is use, else default
tt_content.bullets.subTypeField = layout
tt_content.bullets.default {

}
tt_content.bullets.1 {

}
tt_content.bullets.2 {

}
// This is what happens if the typeField-value does not match any of the above
tt_content.default.default {

}

TSref - 79

RECORDS:
The register-key SYS_LASTCHANGED is updated with the tstamp-field of the records selected which has a higher value
than the current.

NOTE: Records with parent ids (pid's) for non-accessible pages (that is hidden, timed or access-protected pages) are
normally not selected. Pages may be of any type, except recycler. Disable the check with the "dontCheckPid"-option.

Property: Data type: Description: Default:
source records-list /

stdWrap
List of record-id's, optionally with appended table-names.

Example:
tt_content_34, 45, tt_links_56

tables list of tables List of accepted tables. If any items in the ".source"-list is not prepended
with a tablename, the first table in this list is assumed to be the table for
such records.
Also tablenames configured in .conf is allowed.

Example:
tables = tt_content, tt_address, tt_links
conf.tx_myexttable = TEXT
conf.tx_myexttable.value = Hello world

This adds the tables tt_content, tt_address, tt_links, tx_myexttable

conf.[tablename] cObject Config-array which renders records from table tablename If this is NOT
defined, the
rendering of the
records is done
with the toplevel-
object
[tablename] - just
like the cObject,
CONTENT!

wrap wrap

dontCheckPid boolean Normally a record cannot be selected, if it's parent page (pid) is not
accessible for the website user. This option disables that check.

[tsref:(cObject).RECORDS]

Example:
 20 = RECORDS
 20.source.field = records
 20.tables = tt_address
 20.conf.tt_address < tt_address.default

TSref - 80

HMENU:
Generates hierarchical menus.

Property: Data type: Description: Default:
(1 / 2 / 3 /...) menuObj Required!

Defines which menuObj that should render the menuitems on
the various levels.
1 is the first level, 2 is the second level, 3 is the third level, 4
is

Example:
temp.sidemenu = HMENU
temp.sidemenu.1 = GMENU

 (no menu)

entryLevel int Defines at which level in the rootLine, the menu should start.
Default is "0" which gives us a menu of the very first pages on
the site.
If the value is < 0, entryLevel is chosen from "behind" in the
rootLine. Thus "-1" is a menu with items from the outermost
level, "-2" is the level before the outermost...

0

special "directory" /
"list" / "updated"
/ "browse" /
"rootline" /
"keywords" /
“language”

(See separate table below)

special.value list of page-uid's
/stdWrap

See above

minItems int The minimum items in the menu. If the number of pages does
not reach this level, a dummy-page with the title "..." and uid=
[currentpage_id] is inserted.

Notice: Affects all sub menus as well. To set the value for each
menu level individually, set the properties in the menu objects
(see “Common properties” table).

maxItems int The maximum items in the menu. More items will be ignored.

Notice: Affects all sub menus as well. (See “minItems” for
notice)

begin int +calc The first item in the menu.

Example:
This results in a menu, where the first two items are skipped
starting with item number 3:
 begin = 3

Notice: Affects all sub menus as well. (See “minItems” for
notice)

excludeUidList list of int This is a list of page uid's to exclude when the select statement
is done. Comma-separated. You may add “current” to the list to
exclude the current page.

Example:
The pages with these uid-number will NOT be within the menu!!
Additionally the current page is always excluded too.
 excludeUidList = 34,2,current

excludeDoktypes list of integers Enter the list of page document types (doktype) to exclude from
menus. By default pages that are “not in menu” (5) are excluded
and those marked for backend user access only (6).

5,6

includeNotInMenu boolean If set, pages with type “Not in menu” will be included in menus.
The number “5” will simply be removed from the current dok-
type list (which is by default “5,6” but can be changed by
“excludeDoktypes”, see above).

alwaysActivePIDlist list of integers This is a list of page UID numbers that will always be regarded
as active menu items and thereby automatically opened
regardless of the rootline.

TSref - 81

Property: Data type: Description: Default:
protectLvar boolean /

keyword
If set, then for each page in the menu it will be checked if an
Alternative Page Language record for the language defined in
"config.sys_language_uid" (typically defined via &L) exists for
the page. If that is not the case and the pages “Localization
settings” have the “Hide page if no translation for current
language exists” flag set, then the menu item will link to a non
accessible page that will yield an error page to the user. Setting
this option will prevent that situation by simply adding “&L=0” for
such pages, meaning that they will switch to the default
language rather than keeping the current language.
The check is only carried out if a translation is requested
("config.sys_language_uid" is not zero).

Keyword: “all”
When set to “all” the same check is carried out but it will not
look if “Hide page if no translation for current language exists” is
set - it always reverts to default language if no translation is
found.

For these options to make sense, they should only be used
when “config.sys_language_mode” is not set to
“content_fallback”.

addQueryString string see typolink.addQueryString

Notice: This works only for special=language.

if ->if If "if" returns false, the menu is not generated

wrap wrap

stdWrap ->stdWrap
[tsref:(cObject).HMENU]

Example:
temp.sidemenu = HMENU
temp.sidemenu.entryLevel = 1
temp.sidemenu.1 = TMENU
temp.sidemenu.1 {
 target = page
 NO.afterImg = media/bullets/dots2.gif |*||*| _
 NO.afterImgTagParams = hspace="4"
 NO.linkWrap = {$fontTag}
 NO.ATagBeforeWrap = 1
 ACT < .NO
 ACT = 1
 ACT.linkWrap = {$fontTag}
}

The .special property
This property makes it possible to create menus that are not strictly reflecting the current page-structure, but rather creating
menus with links to pages like "next/previous", "last modified", "pages in a certain page" and so on.

NOTE: Don't set .entryLevel for a HMENU when using this option! Also be aware that this selects pages for the first level in
the menu. Submenus by menuPbjects 2+ will be created as usual.

.special.value always has stdWrap-properties!

Their properies are put in this tables:

Type: Description: Default:
directory This will generate a menu of all pages with pid = 35 and pid = 56.

 20 = HMENU
 20.special = directory
 20.special.value = 35, 56

If .value is not set, the default pid is the current page.

Support for Mount Pages: Yes.

TSref - 82

Type: Description: Default:
list This will generate a menu with the two pages (uid=35 and uid=36) listed:

 20 = HMENU
 20.special = list
 20.special.value = 35, 56

If .value is not set, the default uid is the .entryLevel uid.

Support for Mount Pages: Yes.

updated This will generate a menu of the most recently updated pages from the branches in the tree
starting with the uid's (uid=35 and uid=36) listed. Furthermore the field "tstamp" is used (default
is SYS_LASTCHANGED) and the treedepth is 2 levels. Also there will be shown a maximum of
8 pages and they must have been updated within the last three days (3600*24*3):
 20 = HMENU
 20.special = updated
 20.special.value = 35, 56
 20.special {
 mode = tstamp
 depth = 2
 maxAge = 3600*24*3
 limit = 8
 }

Ordering is by default done in reverse order (desc) with the field specified by “mode” , but
setting “alternativeSortingField” for the menu object (eg GMENU, see later) will override that.
Properties "mode", "depth", "maxAge" and "limit" is only used with special="updated".
mode: Which field in the pages-table to use. Default is "SYS_LASTCHANGED" (which is
updated when a page is generated to the youngest tstamp of the records on the page),
"manual" or “lastUpdated” will use the field "lastUpdated" (set manually in the page-record) and
"tstamp" will use the "tstamp"-field of the pagerecord, which is set automatically when the
record is changed. "crdate" will use "crdate"-field of the pagerecord. “starttime” will use the
starttime field.
Fields with zero value is not selected anyway.
depth: By default (if the value is not an integer) the depth is 20 levels. The range is 1-20. A
depth of 1 means only the start id, depth of 2 means start-id + first level. NOTE: depth is relative
to beginAtLevel.
beginAtLevel: Integer. Determines starting level for the pagetrees generated based on .value
and .depth. Zero is default and includes the start id. 1=starts with the first row of subpages,
2=starts with the second row of subpages. Depth is relative to this starting point.
maxAge: Seconds+calc. Pages with update-dates older than currenttime minus this number of
seconds will not be shown in the menu no matter what. Default is "not used". You may use +-*/
for calculations.
limit: Max number of items in the menu. Default is 10, max is 100.
excludeNoSearchPages: Boolean. If set, pages marked "No search" is not included into
special-menus.

Support for Mount Pages: Yes.

rootline Creates a menu with pages from the "rootline" (see earlier in this reference)
.range = [begin-level] | [end-level] (same way as you reference the .entryLevel for HMENU)
.target_[0-x] targets

This...

page.2 = HMENU
page.2.special = rootline
page.2.special.range = 1|-2
page.2.special.targets.3 = page
page.2.1 = TMENU
page.2.1.target = _top
page.2.1.wrap = <HR> | <HR>
page.2.1.NO {
 linkWrap = | >
}

... creates a menu like this:
Page level 1 > Page level 2 > Page level 3 > Page level 4 >
(The menu starts at level 1 and does NOT link to the current page (-2 is the level before).
Further all pages on level 3 will have "page" as target and all other "_top")

Support for Mount Pages: Yes.

TSref - 83

Type: Description: Default:
browse This kind of menu is built of items given by a list from the property ".item". Each element in the

list (sep. by "|") is either a reserved itemname (see list) with a predefined function or a
userdefined name which you can assign a link to any page. Note that the current page cannot
be the root-page of a site.

Support for Mount Pages: No!

Main properties:
.items ("|" separated list of "itemnames")
.[itemnames].target (target) - optional/alternative target of the item
.[itemnames].uid (uid of page) - optional/alternative page-uid to link to
.[itemnames].fields.[fieldname] (string) - override field "fieldname" in pagerecord.
.items.prevnextToSection (boolean) - if set, the "prev" and "next" navigation will jump to the
next section when it reaches the end of pages in the current section
.value (page-uid) - default is current page id. Seldomly you might want to override this value
with another page-uid which will then act as the basepoint for the menu and the predefined
items.
Ordering is by default done in reverse order (desc) with the field specified by “mode” , but
setting “alternativeSortingField” for the menu object (eg GMENU, see later) will override that.

Reserved itemnames:
next / prev : links to next page / previous page. Next and previous pages are from the same
"pid" as the current page id (or "value") - that is the next item in a menu with the current page.
Also referred to as current level.
If ".prevnextToSection" is set then next/prev will link to the first page of next section / last page
of previous section.
nextsection / prevsection : links to next section / previous section. A section is defined as the
subpages of a page on the same level as the parent (pid) page of the current page. Will not
work if parent page of current page is the root page of the site.
nextsection_last | prevsection_last: Where nextsection/prevsection links to the first page in a
section, these links to the last pages. If there is only one page in the section that will be both
first and last. Will not work if parent page of current page is the root page of the site.
first / last : First / Last page on current level. If there is only one page on the current level that
page will be both first and last.
up : Links to the parent (pid) page of the current page. (up 1 level) Will always be available
index : Links to the parent of the parent page of the current page (up 2 levels). May not be
available if that page is out of the rootline.

Examples:
If id=20 is current page then:
21= prev and first, 19 = next, 18 = last, 17 = up, 1=index, 10 = nextsection,
11 = nextsection_last
prevsection and prevsection_last is not present because id=3 has no
subpages!

TypoScript (only "browse"-part, needs also TMENU/GMENU):
xxx = HMENU
xxx.special = browse
xxx.special {
 items = index|up|next|prev
 items.prevnextToSection = 1
 index.target = _blank
 index.fields.title = INDEX
 index.uid = 8
}

TSref - 84

Type: Description: Default:
keywords Makes a menu of pages with one or more keywords also found on the current page.

.value = page for which keywords to find similar pages.

.mode: Which field in the pages-table to use for sorting. Default is "SYS_LASTCHANGED"
(which is updated when a page is generated to the youngest tstamp of the records on the
page), "manual" or “lastUpdated” will use the field "lastUpdated" (set manually in the page-
record) and "tstamp" will use the "tstamp"-field of the pagerecord, which is set automatically
when the record is changed. "crdate" will use "crdate"-field of the pagerecord. “starttime” will
use the starttime field.
.entryLevel = where in the rootline the search begins. Standard rootline syntax (-x to x)
.depth, .limit, .excludeNoSearchPages, .beginAtLevel (like "updated" menu)
.setKeywords (/stdWrap) = lets you define the keywords manually by defining them as a
commaseparated list. If this property is defined, it overrides the default, which is the keywords
of the current page.
.keywordsField = defines the field in the pages-table in which to search for the keywords.
Default is the fieldname “keyword”. No check is done to see if the field you enter here exists, so
enter an existing field, OK?!
.keywordsField.sourceField = defines the field from the current page from which to take the
keywords being matched. The default is “keyword”. (Notice that “.keywordsField” is only setting
the page-record field to search in !)

Support for Mount Pages: Yes.

language Creates a language selector menu. Typically this is made as a menu with flags for each
language a page is translated to and when the user clicks any element the same page id is hit
but with a change to the “&L” parameter in the URL.

The “language” type will create menu items based on the current page record but with the
language record for each language overlaid if available. The items all link to the current page id
and only “&L” is changed.

Item states:
When “TSFE->sys_language_uid” matches the sys_language uid for an element the state is set
to “ACT”, otherwise “NO”. However, if a page is not available due to the pages “Localization
settings” (which can disable translations) or if no Alternative Page Language record was found
(can be disabled with “.normalWhenNoLanguage”, see below) the state is set to “USERDEF1”
for non-active items and “USERDEF2” for active items. So in total there are four states to create
designs for. It is recommended to disable the link on menu items rendered with “USERDEF1”
and “USERDEF2” in this case since they are disabled exactly because a page in that language
does not exist and might even issue an error if tried accessed (depending on site configuration).

.value = comma list of sys_language uids to construct the menu with. The number of elements
in this list determines the number of menu items.
.normalWhenNoLanguage = boolean, which if set will render the button for a language as a
non-disabled button even if no translation is found for the language.

Example:
Creates a language menu with flags (notice that some lines break):

lib.langMenu = HMENU
lib.langMenu.special = language
lib.langMenu.special.value = 0,1,2
lib.langMenu.1 = GMENU
lib.langMenu.1.NO {
 XY = [5.w]+4, [5.h]+4
 backColor = white
 5 = IMAGE
 5.file = media/flags/flag_uk.gif || media/flags/flag_fr.gif || media/flags/flag_es.gif
 5.offset = 2,2
}

lib.langMenu.1.ACT < lib.langMenu.1.NO
lib.langMenu.1.ACT=1
lib.langMenu.1.ACT.backColor = black

lib.langMenu.1.USERDEF1 < lib.langMenu.1.NO
lib.langMenu.1.USERDEF1=1
lib.langMenu.1.USERDEF1.5.file = media/flags/flag_uk_d.gif || media/flags/flag_fr_d.gif ||
media/flags/flag_es_d.gif
lib.langMenu.1.USERDEF1.noLink = 1

TSref - 85

Type: Description: Default:
userdefined Lets you write your own little PHP-script that generates the array of menuitems.

.file [resource] = filename of the php-file to include. (Just like cObject PHP_SCRIPT)

.[any other key] = your own variables to your script. They are all accessible in the array $conf
in your script

Howto:
You must populate an array called $menuItemsArray with page-records of the menuitems you
want to be in the menu.
It goes like this:

$menuItemsArray[] = pageRow1;
$menuItemsArray[] = pageRow2;
$menuItemsArray[] = pageRow3;
...

A “pageRow” is a record from the table “pages” with all fields selected (SELECT * FROM...)
If you create fake page rows, make sure to add at least “title” and “uid” field values.

Notice:
If you work with mount-points you can set the MP param which should be set for the page by
setting the internal field “_MP_PARAM” in the page-record (xxx-xxx).

Overriding URLs:
You can also use the internal field "_OVERRIDE_HREF" to set a custom href-value (eg.
"http://www.typo3.org") which will in any case be used rather than a link to the page that the
page otherwise might represent. If you use "_OVERRIDE_HREF" then
"_OVERRIDE_TARGET" can be used to override the target value as well (See example below).

Other reserved keys:
“_ADD_GETVARS” can be used to add get parameters to the URL, eg. “&L=xxx”.
“_SAFE” can be used to protect the element to make sure it is not filtered out for any reason.

Creating submenus:
You can create submenus for the next level easily by just adding an array of menu items in the
internal field "_SUB_MENU" (See example below).

Presetting element state
If you would like to preset an element to be recognized as a SPC, IFSUB, ACT, CUR or USR
mode item, you can do so by specifying one of these values in the key “ITEM_STATE” of the
page record. This setting will override the natural state-evaluation.

userfunction Calls a user function/method in class which should (as with “userdefined” above) return an array
with page records for the menu.
.userFunc = function-name

[tsref:(cObject).HMENU.special]

Example: Creating hierarchical menus of custom links
By default the HMENU object is designed to create menus from pages in TYPO3. Such pages are represented by their page-
record contents. Usually the "title" field is used for the title and the "uid" field is used to create a link to that page in the menu.

However the HMENU and sub-menu objects are so powerful that it would be very useful to use these objects for creating
menus of links which does not relate to pages in TYPO3 by their ids. This could be a menu reflecting a menu structure of a
plugin where each link might link to the same page id in TYPO3 but where the difference would be in some parameter value.

This can be easily done with the special-type "userdefined" (see table above) where you can return an array of menu items
customly build in a PHP-script you write.

First, this listing creates a menu in three levels where the first two are graphical items:
 0: # ************************
 1: # MENU LEFT
 2: # ************************
 3: lib.leftmenu.20 = HMENU
 4: lib.leftmenu.20.special = userfunction
 5: lib.leftmenu.20.special.userFunc = user_3dsplm_pi2->makeMenuArray
 6: lib.leftmenu.20.1 = GMENU
 7: lib.leftmenu.20.1.NO {
 8: wrap = <tr><td>|</td></tr><tr><td class="bckgdgrey1" height="1"></td></tr>
 9: XY = 163,19
 10: backColor = white
 11: 10 = TEXT
 12: 10.text.field = title
 13: 10.text.case = upper
 14: 10.fontColor = red
 15: 10.fontFile = fileadmin/fonts/ARIALNB.TTF
 16: 10.niceText = 1
 17: 10.offset = 14,12

TSref - 86

 18: 10.fontSize = 10
 19: }
 20: lib.leftmenu.20.2 = GMENU
 21: lib.leftmenu.20.2.wrap = | <tr><td class="bckgdwhite" height="4"></td></tr><tr><td
class="bckgdgrey1" height="1"></td></tr>
 22: lib.leftmenu.20.2.NO {
 23: wrap = <tr><td class="bckgdwhite" height="4"></td></tr><tr><td>|</td></tr>
 24: XY = 163,16
 25: backColor = white
 26: 10 = TEXT
 27: 10.text.field = title
 28: 10.text.case = upper
 29: 10.fontColor = #666666
 30: 10.fontFile = fileadmin/fonts/ARIALNB.TTF
 31: 10.niceText = 1
 32: 10.offset = 14,12
 33: 10.fontSize = 11
 34: }
 35: lib.leftmenu.20.2.RO < lib.leftmenu.20.2.NO
 36: lib.leftmenu.20.2.RO = 1
 37: lib.leftmenu.20.2.RO.backColor = #eeeeee
 38: lib.leftmenu.20.2.ACT < lib.leftmenu.20.2.NO
 39: lib.leftmenu.20.2.ACT = 1
 40: lib.leftmenu.20.2.ACT.10.fontColor = red
 41: lib.leftmenu.20.3 = TMENU
 42: lib.leftmenu.20.3.NO {
 43: allWrap = <tr><td>|</td></tr>
 44: linkWrap (
 45: <table border="0" cellpadding="0" cellspacing="0" style="margin: 2px; 0px; 2px; 0px;">
 46: <tr>
 47: <td></td>
 48: <td></td>
 49: <td>|</td>
 50: </tr>
 51: </table>
 52:)
 53: }
The menu looks like this on a webpage:

The TypoScript code above generates this menu, but the items does not link straight to pages as usual. This is because the
whole menu is generated from this array, which was returned from the function "menuMenuArray" called in TypoScript line
4+5

 1: function makeMenuArray($content,$conf) {
 2: return array(
 3: array(
 4: 'title' => 'Contact',
 5: '_OVERRIDE_HREF' => 'index.php?id=10',
 6: '_SUB_MENU' => array(
 7: array(
 8: 'title' => 'Offices',
 9: '_OVERRIDE_HREF' => 'index.php?id=11',
 10: '_OVERRIDE_TARGET' => '_top',
 11: 'ITEM_STATE' => 'ACT',
 12: '_SUB_MENU' => array(
 13: array(
 14: 'title' => 'Copenhagen Office',
 15: '_OVERRIDE_HREF' => 'index.php?id=11&officeId=cph',
 16:),
 17: array(
 18: 'title' => 'Paris Office',
 19: '_OVERRIDE_HREF' => 'index.php?id=11&officeId=paris',
 20:),
 21: array(
 22: 'title' => 'New York Office',

TSref - 87

 23: '_OVERRIDE_HREF' => 'http://www.newyork-office.com',
 24: '_OVERRIDE_TARGET' => '_blank',
 25:)
 26:)
 27:),
 28: array(
 29: 'title' => 'Form',
 30: '_OVERRIDE_HREF' => 'index.php?id=10&cmd=showform',
 31:),
 32: array(
 33: 'title' => 'Thank you',
 34: '_OVERRIDE_HREF' => 'index.php?id=10&cmd=thankyou',
 35:),
 36:),
 37:),
 38: array(
 39: 'title' => 'Products',
 40: '_OVERRIDE_HREF' => 'index.php?id=14',
 41:)
 42:);
 43: }

Notice how the array contains "fake" page-records which has no uid field, only a "title" and "_OVERRIDE_HREF" as required and some other
fields as it fits.
• The first level with items "Contact" and "Products" contains "title" and "_OVERRIDE_HREF" fields, but "Contact" extends this by a

"_SUB_MENU" array which contains a similar array of items.
• The first item on the second level, "Offices", contains a field called "_OVERRIDE_TARGET". Further the item has its state set to "ACT"

which means it will render as an "active" item (you will have to calculate such stuff manually when you are not rendering a menu of real
pages!). Finally there is even another sub-level of menu items.

CTABLE:
Creates a standard-table where you can define the content of the the various cells

Property: Data type: Description: Default:
offset x,y Offset from upper left corner 0,0 = intet

tm ->CARRAY
+TDParams

topMenu

lm ->CARRAY
+TDParams

leftMenu

rm ->CARRAY
+TDParams

rightMenu

bm ->CARRAY
+TDParams

bottomMenu

c ->CARRAY
+TDParams

content-cell

cMargins margins Distance around the content-cell "c" 0,0,0,0

cWidth pixels Width of the content-cell "c"

tableParams <TABLE>-params border=0
cellspacing=0
cellpadding=0

[tsref:(cObject).CTABLE]

Example:
page.10 = CTABLE
page.10 {
 offset = 5, 0
 tableParams = border=0 width=400
 cWidth=400
 c.1 = CONTENT
 c.1.table = tt_content
 c.1.select {
 pidInList = this
 orderBy = sorting
 }
 tm.10 < temp.sidemenu
 tm.TDParams = valign=top
}

TSref - 88

OTABLE:
Property: Data type: Description: Default:

offset x,y Offset from upper left corner

Note:
Actually the datatype is “x,y,r,b,w,h”:
x,y is offset from upperleft corner
r,b is offset (margin) to right and bottom
w is the required width of the content field
h is the required height of the content field

All measures is in pixels.

1,2,3,4... cObject

tableParams <TABLE>-params border=0
cellspacing=0
cellpadding=0

[tsref:(cObject).OTABLE]

Example:
top.100 = OTABLE
top.100.offset = 310,8
top.100.tableParams = border=0 cellpadding=0 cellspacing=0
top.100.1 < temp.topmenu

COLUMNS:
Property: Data type: Description: Default:

tableParams <TABLE>-params border=0
cellspacing=0
cellpadding=0

TDparams <TD>-params valign=top

rows int (Range: 2-20) The number of rows in the columns. 2

totalWidth int The total-width of the columns+gaps

gapWidth int /stdWrap
+optionSplit

Width of the gap between columns.
0 = no gap

gapBgCol HTML-color /
stdWrap
+optionSplit

background-color for the gap-tablecells

gapLineThickness int /stdWrap
+optionSplit

lineThickness of the dividerline in the gap between cells
0 = no line

gapLineCol HTML-color /
stdWrap
+optionSplit

Line color black

[column-number]
1,2,3,4...

cObject This is the content-object for each column!!

after cObject This is a cObject placed after the columns-table!!

if ->if if "if" returns false the columns are not rendered!

stdWrap ->stdWrap
[tsref:(cObject).COLUMNS]

HRULER:
Property: Data type: Description: Default:

lineThickness int /stdWrap Range: 1-50 1

lineColor HTML-color The color of the ruler. black

spaceLeft pixels space before the line (to the left)

spaceRight pixels space after the line (to the right)

tableWidth string Width of the ruler (“width” attribute in a table) 99%

stdWrap ->stdWrap
[tsref:(cObject).HRULER]

IMGTEXT:
This object is designed to align images and text. This is normally used to render text/picture records from the tt_content table.

TSref - 89

The image(s) are placed in a table and the table is placed before, after or left/right relative to the text.

See code-examples.

Property: Data type: Description: Default:
text ->CARRAY /

stdWrap
Use this to import / generate the content, that should flow around the
imageblock.

textPos int /stdWrap Textposition:
bit[0-2]: 000 = centre, 001 = right, 010 = left
bit[3-5]: 000 = over, 001 = under, 010 text

0 - Above: Centre
1 - Above: Right
2 - Above: Left
8 - Below: Centre
9 - Below: Right
10 - Below: Left
17 - In Text: Right
18 - In Text: Left
25 - In Text: Right (no wrap)
26 - In Text: Left (no wrap)

textMargin pixels /stdWrap margin between the image and the content

textMargin_outOfText boolean If set, the textMargin space will still be inserted even if the image is placed
above or below the text.
This flag is only for a kind of backwards compatibility because this
"feature" was recently considered a bug and thus corrected. So if anyone
has depended on this way things are done, you can compensate with this
flag.

imgList list of imagefiles /
stdWrap

list of images from ".imgPath"

Example:
This imports the list of images from tt_content's image-field
"imgList.field = image"

imgPath path /stdWrap Path to the images

Example:
"uploads/pics/"

imgMax int /stdWrap max number of images

imgStart int /stdWrap start with image-number ".imgStart"

imgObjNum imgObjNum
+optionSplit

Here you define, which IMAGE-cObjects from the array "1,2,3,4..." in this
object that should render the images.
"current" is set to the image-filename.

Example:
"imgObjNum = 1 |*||*| 2":
This would render the first two images with "1. ..." and the last image with
"2. ...", provided that the ".imgList" contains 3 images.

1,2,3,4 ->IMAGE (cObject) Rendering of the images
The register "IMAGE_NUM" is set with the number of image being
rendered for each rendering of a image-object. Starting with zero.
The image-object should not be of type GIFBUILDER!

Important:
"file.import.current = 1" fetches the name of the images!

caption ->CARRAY /
stdWrap

Caption

captionAlign align /stdWrap Caption alignment default =
".textPos"

captionSplit boolean If this is set, the caption text is split by the character (or string) from
".token" , and every item is displayed under an image each in the image
block.
.token = (string /stdWrap) Character to split the caption elements (default
is chr(10))
.cObject = cObject, used to fetch the caption for the split
.stdWrap = stdWrap properties used to render the caption.

altText
titleText

string /stdWrap Default altText/titleText if no alternatives are provided by the ->IMAGE
cObjects

If no titltext is specified, it will use the alttext instead
If no alttext is specified, it will use an empty alttext

TSref - 90

Property: Data type: Description: Default:
longdescURL string /stdWrap Default longdescURL if no alternatives are provided by the ->IMAGE

cObjects

"longdesc" attribute (URL pointing to document with extensive details
about image).

border boolean /stdWrap If true, a border i generated around the images.

borderCol HTML-color /
stdWrap

Color of the border, if ".border" is set black

borderThick pixels /stdWrap Width of the border around the pictures 1

cols int /stdWrap Columns

rows int /stdWrap Rows (higher priority thab "cols")

noRows boolean /stdWrap If set, the rows are not divided by a table-rows. Thus images are more
nicely shown if the height differs a lot (normally the width is the same!)

noCols boolean /stdWrap If set, the columns are not made in the table. The images are all put in one
row separated by a clear giffile to space them apart.
If noRows is set, noCols will be unset. They cannot be set simultaneously.

colSpace int /stdWrap space between columns

rowSpace int /stdWrap space between rows

spaceBelowAbove int /stdWrap Pixelsspace between content an images when position of image is above
or belox text (but not in text)

tableStdWrap ->stdWrap This passes the final <table> code for the image block to the stdWrap
function.

maxW int /stdWrap max width of the image-table.
This will scale images not in the right size! Takes the number of columns
into account!

NOTE: Works ONLY if IMAGE-obj is NOT GIFBUILDER

maxWInText int /stdWrap max width of the image-table, if the text is wrapped around the image-table
(on the left or right side).
This will scale images not in the right size! Takes the number of columns
into account!

NOTE: Works ONLY if IMAGE-obj is NOT GIFBUILDER

50% of maxW

equalH int /stdWrap If this value is greater than zero, it will secure that images in a row has the
same height. The width will be calculated.
If the total width of the images raise above the "maxW"-value of the table
the height for each image will be scaled down equally so that the images
still have the same height but is within the limits of the totalWidth.
Please note that this value will override the properties "width", "maxH",
"maxW", "minW", "minH" of the IMAGE-objects generating the images.
Furthermore it will override the "noRows"-property and generate a table
with no columns instead!

colRelations string /stdWrap This value defines the width-relations of the images in the columns of
IMGTEXT. The syntax is "[int] : [int] : [int] : ..." for each column. If there are
more imagecolumns than figures in this value, it's ignored. If the relation
between two of these figures exceeds 10, this function is ignore.
It works only fully if all images are downscaled by their maxW-definition.

Example:
If 6 images are placed in three columns and their width's are high enough
to be forcibly scaled, this value will scale the images in the to be eg. 100,
200 and 300 pixels from left to right
1 : 2 : 3

TSref - 91

Property: Data type: Description: Default:
image_compression int /stdWrap Image Compression:

0= Default
1= Dont change! (removes all parameters for the image_object!!)
(adds gif-extension and color-reduction command)
10= GIF/256
11= GIF/128
12= GIF/64
13= GIF/32
14= GIF/16
15= GIF/8
(adds jpg-extension and quality command)
20= IM: -quality 100
21= IM: -quality 90 <=> Photoshop 60 (JPG/Very High)
22= IM: -quality 80 (JPG/High)
23= IM: -quality 70
24= IM: -quality 60 <=> Photoshop 30 (JPG/Medium)
25= IM: -quality 50
26= IM: -quality 40 (JPG/Low)
27= IM: -quality 30 <=> Photoshop 10
28= IM: -quality 20 (JPG/Very Low)

The default ImageMagick quality seems to be 75. This equals Photoshop
quality 45. Images compressed with ImageMagick with the same visual
quality as a Photoshop-compressed image seems to be largely 50%
greater in size!!

NOTE: Works ONLY if IMAGE-obj is NOT GIFBUILDER

image_effects int /stdWrap Adds these commands to the parameteres for the scaling. This function
has no effect if "image_compression" above is set to 1!!

1 => "-rotate 90",
2 => "-rotate 270",
3 => "-rotate 180",
10 => "-colorspace GRAY",
11 => "-sharpen 70",
20 => "-normalize",
23 => "-contrast",
25 => "-gamma 1.3",
26 => "-gamma 0.8"

NOTE: Works ONLY if IMAGE-obj is NOT GIFBUILDER

image_frames Array
+ .key /stdWrap

Frames:
.key points to the frame used.

".image_frames.x" is imgResource-mask (".m")properties which will
override to the [imgResource].m properties of the imageObjects. This is
used to mask the images into a frame. See how it's done in the default
configuration and IMGTEXT in the static_template-table.

Example:
1 {
 mask = media/uploads/darkroom1_mask.jpg
 bgImg = GIFBUILDER
 bgImg {
 XY = 100,100
 backColor = {$bgCol}
 }
 bottomImg = GIFBUILDER
 bottomImg {
 XY = 100,100
 backColor = black
 }
 bottomImg_mask = media/uploads/darkroom1_bottom.jpg
}

NOTE: This cancels the jpg-quality settings sent as ordinary ".params" to
the imgResource. In addition the output of this operation will always be jpg
or gif!
NOTE: Works ONLY if IMAGE-obj is NOT GIFBUILDER

editIcons string (See stdWrap.editIcons)

noStretchAndMargin
Cells

boolean If set (1), the cells used to add left and right margins plus stretch out the
table will not be added. You will loose the ability to set margins for the
object if entered “in text”. So it's not recommended, but it has been
requested by some people for reasons.

stdWrap ->stdWrap
[tsref:(cObject).IMGTEXT]

TSref - 92

Example:
tt_content.textpic.default {
 5 = IMGTEXT
 5 {
 text < tt_content.text.default
 imgList.field = image
 textPos.field = imageorient
 imgPath = uploads/pics/
 imgObjNum = 1
 1 {
 file.import.current = 1
 file.width.field = imagewidth
 imageLinkWrap = 1
 imageLinkWrap {
 bodyTag = <BODY bgColor=black>
 wrap = |
 width = 800m
 height = 600m
 JSwindow = 1
 JSwindow.newWindow = 1
 JSwindow.expand = 17,20
 }
 }
 maxW = 450
 maxWInText = 300
 cols.field = imagecols
 border.field = imageborder
 caption {
 1 = TEXT
 1.field = imagecaption
 1.wrap = |
 1.wrap2 = {$cBodyTextWrap}
 }
 borderThick = 2
 colSpace = 10
 rowSpace = 10
 textMargin = 10
 }
 30 = HTML
 30.value =

}

CASE:
This provides something alike a switch-construct in PHP. The property "key" is supposed to equal the name of another
property in the object (Array...) which is a cObject. If the property .[key] is defined, "default" will be used.

Strings is Array... can be anything except the reserved words "key", "default", "stdWrap", "if"

Property: Data type: Description: Default:
setCurrent string /stdWrap Sets the "current"-value.

key string /stdWrap This is the

default cObject

Array... cObject

stdWrap ->stdWrap

if ->if if "if" returns false nothing is returned
[tsref:(cObject).CASE]

Example:
This example chooses between two different renderings of some content depending on whether the field "layout" is "1" of not
("default"). The result is in either case wrapped with "|
". If the field "header" turns out not to be set ("false") an empty
string is returned anyway.

stuff = CASE
stuff.key.field = layout
stuff.if.isTrue.field = header
stuff.stdWrap.wrap = |

stuff.default = TEXT
stuff.default {

}
stuff.1 = TEXT
stuff.1 {

}

TSref - 93

LOAD_REGISTER:
This provides a way to load the array $GLOBALS["TSFE"]->register[] with values. It doesn't return anything! The usefullness
of this is, that some predefined configurations (like the page-content) can be used in various places but use different values
as the values of the register can change during the page-rendering.

Property: Data type: Description: Default:
Array...
[fieldname]

string /stdWrap Example:
(This sets "contentWidth", "label" and "head")

page.27 = LOAD_REGISTER
page.27 {
 contentWidth = 500
 label.field = header
 head = some text
 head.wrap = |
}

[tsref:(cObject).LOAD_REGISTER]

Example:

RESTORE_REGISTER:
This unsets the latest changes in the register-array as set by LOAD_REGISTER.

Internally this works like a stack there the original register is saved when LOAD_REGISTER is called. Then a
RESTORE_REGISTER cObject is called the last element is pulled of that stack the register is replaced with it.

RESTORE_REGISTER has no properties.

FORM:
This provides a way to create forms

textarea: Label | [* = required][fieldname =] textarea[,cols,rows,"wrap= [eg. "OFF"]"] | [defaultdata]
| Special evaluation configuration (see note below)
input: Label | [* = required][fieldname =] input[,size,max] | [defaultdata] | Special
evaluation configuration (see note below)
password: Label | [* = required][fieldname =] input[,size,max] | [defaultdata]
file: Label | [* = required][fieldname (*1)=] file[,size]
check: Label | [fieldname =]check | [checked=1]
select: Label | [* = required][fieldname =]select[,size (int/"auto"), "m"=multiple] | label
[=value] , ...
radio: Label | [* = required][fieldname =]radio | label [=value] , ...
hidden: |[fieldname =]hidden | value
submit: Label |[fieldname =]submit | Caption
reset: Label |[fieldname =]reset | Caption
label: Label | label | Label value
property: [Internal, see below]

Preselected item with type "select" and "radio":
This is an example, where "Brown" is the preselected item of a selectorbox:

Haircolor: | *haircolor=select| Blue=blue , Red=red , *Brown=brown

You can enter multiple items to be preselected by placing a asterisk in front of each preselected item.

Property override:
This can be done with the following properties from the table below:

type, locationData, goodMess, badMess, emailMess

syntax:
|[property] =property | value

(*1) (fieldname for files)

In order for files to be attached the mails, you must use the fieldnames:

attachment, attachment1, ... , attachment10

TSref - 94

Correct return-email:
In order for the mails to be attached with the email address of the people that submits the mails, please use the fieldname
"email", eg: Email: | *email=input |

Special evaluation
By prefixing a “*” before the fieldname of most types you can have the value of the field required. The check is done in
JavaScript; It will only submit the form if this field is filled in.

Alternatively you can evaluate a field value against a regular expression or as an email address for certain types (textarea,
password, input).

This is done by specifying the “Special evaluation configuration” for those types as part 4 in the configuration line (see
examples above).

The special evaluation types are divided by a semicolon (“:”).

The first part defines the evaluation keyword. Current options are “EREG” (for regular expression) and “EMAIL” (for
evaluation to an email address).

If the “EREG” keyword is specified the 2nd and 3rd parts are error message and regular expression respectively.

Examples:
Your address: | address=textarea,40,10 | | EREG : You can enter only characters A to Z : ^[a-zA-Z]*$
Your email: | *email=input | | EMAIL

Property: Data type: Description: Default:
data string /stdWrap This is the data that sets up the form. See above.

"||" can be used instead of linebreaks

TSref - 95

Property: Data type: Description: Default:
dataArray [array of form

elements]
This is an alternative way to define the form-fields. Instead of using the
syntax with vertical separator bars suggested by the .data property, you
can define the elements in regular TypoScript style arrays.
.dataArray is added to the input in .data if any.
Every entry in the dataArray is numeric and has three main properties,
label, type, value and required. 'label' and 'value' has stdWrap properties.
There is an alternative property to .value, which is .valueArray. This is also
an array in the same style with numeric entries which has properties label,
value and selected. 'label' has stdWrap properties.

Example:
 dataArray {
 10.label = Name:
 10.type = name=input
 10.value = [Enter name]
 10.required = 1
 20.label = Eyecolor
 20.type = eyecolor=select
 20.valueArray {
 10.label = Blue
 10.value = 1
 20.label = Red
 20.value = 2
 20.selected = 1
 }
 40.type = submit=submit
 40.value = Submit
 }

This is the same as this line in the .data property:

Name: | *name=input | [Enter name]
Eyecolor: | eyecolor=select | Blue=1, *Red=2
| submit=submit | Submit

Why do it this way? Good question, but doing it this way has a
tremendous advantage because labels are all separated from the codes.
In addition it's much easier to pull out or insert new elements in the form.
Inserting an email-field after the name field would be like this:
 dataArray {
 15.label = Email:
 15.type = input
 15.value = your@email.com
 15.specialEval = EMAIL
 }

Or translating the form to danish (setting config.language to 'dk'):

 dataArray {
 10.label.lang.dk = Navn:
 10.value.lang.dk = [Indtast dit navn]
 20.label.lang.dk = Øjenfarve
 20.valueArray {
 10.label.lang.dk = Blå
 20.label.lang.dk = Rød
 }
 40.value.lang.dk = Send
 }

radioWrap ->stdWrap Wraps the labels for radiobuttons

type int Type (action="" of the form):

Integer: this is regarded to be a page in TYPO3
String: this is regarded to be a normal URL (eg. "formmail.php" or
"fe_tce_db.php")
Empty: the current page is chosen.

NOTE: If type is integer/empty the form will be submitted to a page in
TYPO3 and if this page has a value for target/no_cache, then this will be
used instead of the default target/no_cache below.

NOTE: If the redirect-value is set, the redirect-target overrides the target
set by the action-url

NOTE: May be overridden by the property override feature of the formdata
(see above)

target target Default target of the form.

TSref - 96

Property: Data type: Description: Default:
method form-method Example:

GET
POST

no_cache string Default no_cache-option

noValueInsert boolean By default values that are submitted to the same page (and thereby same
form, eg. at searchforms) are re-inserted in the form instead of any
default-data that might be set up.
This, however, applies ONLY if the "no_cache=1" is set! (a page being
cached may not include user-specific defaults in the fields of course...)
If you set this flag, "noValueInsert", the content will always be the default
content.

compensateFieldWidt
h

double Overriding option to the config-value of the same name. See "CONFIG"
above.

locationData boolean / string If this value is true, then a hidden-field called "locationData" is added to
the form. This field wil be loaded with a value like this:
[page id]:[current record table]:[current record id]
For example, if a formfield is inserted on page with uid = "100", as a page-
content item from the table "tt_content" with id "120", then the value would
be "100:tt_content:120".
The value is use by eg. the cObject SEARCHRESULT. If the value
$GLOBALS["HTTP_POST_VARS"]["locationData"] is detected here, the
search is done as if it was performed on this page! This is very usefull if
you want a search functionality implemented on a page with the "stype"
field set to "L1" which means that the search is carried out from the first
level in the rootline.
Suppose you want the search to submit to a dedicated searchpage where
ever. This page will then know - because of locationData - that the search
was submittet from another place on the website.
If "locationData" is not only true but also set to "HTTP_POST_VARS" then
the value will insert the content of $GLOBALS["HTTP_POST_VARS"]
["locationData"] instead of the true location data of the page. This should
be done with search-fields as this will carry the initial searching start point
with.
NOTE: May be overridden by the property override feature of the formdata
(see above)

redirect string /stdWrap URL to redirect to (generates the hidden field "redirect")

Integer: this is regarded to be a page in TYPO3
String: this is regarded to be a normal url
Empty; the current page is chosen.

NOTE: If this value is set the target of this overriddes the target of the
"type".

recipient (list of) string /
stdWrap

Email recipient of the formmail content (generates the hiddenfield
"recipient")

No email

goodMess string Message for the formevaluation function in case of correctly filled form.

NOTE: May be overridden by the property override feature of the formdata
(see above)

No message

badMess string Prefixed Message for the formevaluation in case of missing required fields.
This message is shown above the list of fields.

NOTE: May be overridden by the property override feature of the formdata
(see above)

No message

emailMess string Message if a field evaluated to be an email adresse did not validate.

NOTE: May be overridden by the property override feature of the formdata
(see above)

image ->IMAGE
(cObject)

If this is a valid image the submitbutton is rendered as this image!!

NOTE: CurrentValue is set to the caption-label before generating the
image.

layout string This defines how the label and the field are placed towards each other.

Example:
This substitutes the "###FIELD###" with the field data and the
"###LABEL###' with labeldata.

<tr><td>###FIELD###</td><td> ###LABEL###</td></tr>

You can also use the marker ###COMMENT### which is ALSO the label
value inserted, but wrapped in .commentWrap stdWrap-properties (see
below)

TSref - 97

Property: Data type: Description: Default:
fieldWrap ->stdWrap Field: Wraps the fields

labelWrap ->stdWrap Labels: Wraps the label

commentWrap ->stdWrap Comments: Wrap for comments IF you use ###COMMENT###

REQ boolean Defines if required-fields should be checked and marked up

REQ.fieldWrap ->stdWrap Field: Wraps the fields, but for reuired fields the
"fieldWrap"-prope
rty

REQ.labelWrap ->stdWrap Labels: Wraps the label, but for reuired fields the
"labelWrap"-prope
rty

REQ.layout string The same as "layout" above, but for reuired fields the
"layout"-property

COMMENT.layout string Alternative layout for comments. the
"layout"-property

CHECK.layout string Alternative layout for checkboxes the
"layout"-property

RADIO.layout string Alternative layout for radiobuttons the
"layout"-property

LABEL.layout string Alternative layout for label types the
"layout"-property

stdWrap ->stdWrap Wraps the hole form (before formtags is added)

hiddenFields [array of cObject] Used to set hiddenFields from TS.

Example:
hiddenFields.pid = TEXT
hiddenFields.pid.value = 2

This makes a hidden-field with the name “pid” and value “2”.

params form-element tag
parameters

Extra parameters to form elements

Example:
params = style=”width:200px;”
params.textarea = style=”width:300px;”
params.check =

This sets the default to 200 px width, but excludes check-boxes and sets
textareas to 300.

wrapFieldName wrap This wraps the fieldnames before they are applied to the form-field tags.

Example:
If value is tx_myextension[input][|] then the fieldname "email" would be
wrapped to this value: tx_myextension[input][email]

noWrapAttr boolean If this value is true then all wrap attributes of textarea elements are
suppressed. This is needed for XHTML-compliancy.

The wrap attributes can also be disabled on a per-field basis by using the
special keyword "disabled" as the value of the wrap attribute.

arrayReturnMode boolean If set, the <form> tags and the form content will be returned in an array as
separate elements including other pratical values. This mode is for use in
extensions where the array return value can be more useful.

accessibility boolean If set, then the form will be compliant with accessibility guidelines (XHTML
compliant). This includes:

● label string will be wrapped in <label for="formname[fieldname-hash]">
... </label>

● All form elements will have an id-attribute carrying the formname with
the md5-hashed fieldname appended

Notice: In TYPO3 4.0 and later, CSS Styled Content is configured to
produce accessible forms by default.

formName string An alternative name for this form. Default will be a unique (random) hash.

<form name=”...”>
fieldPrefix string Alternative prefix for the name of the fields in this form. Otherwise, all

fields are prefixed with the form name (either a unique hash or the name
set in the “formName” property). If set to “0”, there will be no prefix at all.

TSref - 98

Property: Data type: Description: Default:
dontMd5FieldNames boolean The IDs generated for all elements in a form are md5 hashes from the

fieldname. Setting this to true will disable this behaviour and use a cleaned
fieldname, prefixed with the form name as the ID, instead.
This can be useful to style specifically named fields with CSS.

[tsref:(cObject).FORM]

Example: Login
In order to creating a loginform supply these fields:

"username" = username

"userident" = password

"login_status" = "logout" for logout, "login" for login.

If you insert "<!--###USERNAME###-->" somewhere in your document this will be substituted by the username if a user is
logged in!

If you want the login-form to change into a logout form you should use conditions to do this. See this TS-example (extract
from the static_template "styles.content (default)"):
 # loginform
styles.content.loginform {
 data = Username:|*username=input || Password:|*userident=password
}
[usergroup = *]
styles.content.loginform.data = Username: <!--###USERNAME###--> || |submit=submit| Logout
[global]

(shortend a bit...)

Example: Mailform
This creates a simple mailform (this is not TypoScript, but the setup code that you should put directly into the "bodytext"-field
of a pagecontent record of the type "FORMMAIL":
Name: | *the name = input | Enter your name here
Email: | *email=input |
Like TV: | tv=check |
|formtype_mail = submit | Send this!
|html_enabled=hidden | 1
|subject=hidden| This is the subject
|recipient_copy=hidden | copy@email.com
|auto_respond_msg=hidden| Hello / This is an autoresponse. //We have received your mail.
|tv=hidden | 0

- "NAME" is required (the asterisk, *) and the fieldname will be "the_name". A default value is set ("Enter your...")

- "Email" is also required, the name will be "email" (which it should always be for the address to shown up properly in the real
email!) and theres no default value here.

- "Like TV" is a checkbox. Default is "unchecked".

- "formtype_mail" is the name of the submit-button. And it should be if you use the build-in formmail of TYPO3. Then this var
makes TYPO3 react on the input and interpret it as formmail-input!

- "html_enabled" will let the mail be rendered in nice HTML

- "use_base64" will send the mail encoded as base64 instead of quoted-printable

- "subject": Enter the subject of your mail

- "recipient_copy" : A copy is sent to this mail-address. You may supply more addresses by separating with a comma ",". The
mail sent to recicipent_copy is a the same, but a separate message from the one sent to the 'recipient' and furthermore the
copy-mail is sent only if the 'recipient' mail is sent.

- "auto_respond_msg": This is a autoresponder message. This is sent if the email of the "submitter" is known (field: "email").
The value of this is the message broken up in to lines by a slash "/". Each slash is a new line in the email. The first line is
used for the subject.

- "tv" (again, but hidden). Repeating this field may be smart as the value "tv" is normally NOT submitted with the value "false"
if not checked. Inserting this line will secure a default value for "tv".

TSref - 99

SEARCHRESULT:
Searchwords are loaded into the register in a form ready for linking to pages:

Example:
register:SWORD_PARAMS = '&sword_list[]=word1&sword_list[]=word2'

See typolink for more info!

SEARCHRESULT returns results only from pages with of doktype "Standard" (1), "Advanced" (2) and "Not in menu" (5)

Property: Data type: Description: Default:
allowedCols string List (separated by ":") of allowed table-cols.

Example:
pages.title:tt_content.bodytext

layout string This defines how the search content is shown.

Example:
This substitutes the following fields:
###RANGELOW###: The low result range, eg. "1"
###RANGEHIGH###: The high result range, eg. "10"
###TOTAL###: The total results
###RESULT###: The result itself
###NEXT###: The next-button
###PREV###: The prev-button

next cObject This cObject will be wrapped by a link to the next searchresult. This is the
code substituting the "###NEXT###"-mark

prev cObject This cObject will be wrapped by a link to the prev searchresult. This is the
code substituting the "###PREV###"-mark

target target target til next/prev links!

range int The number of results at a time! 20

renderObj cObject the cObject to render the searchresults
$cObj->data array is set to the resulting record from the search.
Please note, that in all fields are named [tablename]_[fieldnam]. Thus the
pagetitle is in the field "pages_title".
Apart from this, these fields from the pages-table are also present:

uid
renderWrap wrap

resultObj cObject the cObject prepended in the search results returns rows

noResultObj cObject the cObject used if the search results in no rows.

noOrderBy boolean If this is set, the result is NOT sorted after lastUpdated, tstamp for the
pages-table.

wrap wrap Wrap the whole content...

stdWrap ->stdWrap Wrap the whole content...

addExtUrlsAndShort
Cuts

boolean If set, then the doktypes 3 and 4 (External URLS and Shortcuts) are added
to the doktypes being searched.
However at this point in time, no pages will be select if they do not have at
least one tt_content record on them! That is because the pages and
tt_content (or other) table is joined. So there must at least one occurance
of a tt_content element on a External URL / Shortcut page for them to
show up.

languageField.[2nd
table]

string Setting a field name to filter language on. This works like the
“languageField” setting in ->select

Example:

languageField.tt_content = sys_language_uid
[tsref:(cObject).SEARCHRESULT]

NOTE: "sword" and "scols" MUST be set in order for the search to be engaged.

var "sword" = search word(s)

var "scols" = search columns separated by ":". Eg: pages.title:pages.keywords:tt_content.bodytext

var "stype" = the starting point of the search: false = current page, L-2 = page before currentPage, L-1 = current page, L0 =
rootlevel, L1 = from first level, L2 = from second level

var $GLOBALS["HTTP_POST_VARS"]["locationData"]: If this is set, the search is done as was it from another page in the
website given by the value of "locationData" here. See the description at the cObject "FORMS".

TSref - 100

Only if the page locationData is pointing to, is inside the real rootLine of the site, the search will take this into account.

internal:

var "scount": If this is set this is used as the searchCount - the total rows in the search. This way we don't need to reconstruct
this number!

var "spointer": This points to the start-record in the search.

LATER:

var "alldomains" : boolean: If set the search will proceed into other domains

var "allsites" : boolean: If set the search will proceed into other sites (defined by the "root" setting of an
active template.)

var "depth": The depth

Search syntax
When you search, you can use three operatortypes

• AND: "+", "and" (UK), "og" (DK)

• OR: "or" (UK), "eller" (DK)

• NOT: "-", "not" (UK), "uden" (DK)

Default operator is AND. If you encapsulate words in "" they are searched for as a whole string. The search is case
insensitive and matches parts of words also.

Examples:
1. menu backend - will find pages with both 'menu' and 'backend'.

2. "menu backend" - will find pages with the phrase "menu backend".

3. menu or backend - will find pages with either 'menu' or 'backend'

4. menu or backend not content - will find pages with either 'menu' or 'backend' but not 'content'

Queries to the examples:
In this case "pagecontent" is chosen as the fields to search. That includes tt_content.header, tt_content.bodytext and
tt_content.imagecaption.

Prefixed to these queries is this:
SELECT pages.title AS pages_title, pages.subtitle AS pages_subtitle, pages.keywords AS pages_keywords, pages.description AS pages_description, pages.uid,
tt_content.header AS tt_content_header, tt_content.bodytext AS tt_content_bodytext, tt_content.imagecaption AS tt_content_imagecaption FROM pages, tt_content
WHERE(tt_content.pid=pages.uid) AND (pages.uid IN (2,5,6,20,21,22,29,30,31,3,4,8,9,16,1) AND pages.doktype in (1,2,5) AND pages.no_search=0 AND NOT
tt_content.deleted AND NOT tt_content.hidden AND (tt_content.starttime<=985792797) AND (tt_content.endtime=0 OR tt_content.endtime>985792797) AND
tt_content.fe_group IN (0,-1) AND NOT pages.deleted AND NOT pages.hidden AND (pages.starttime<=985792797) AND (pages.endtime=0 OR
pages.endtime>985792797) AND pages.fe_group IN (0,-1)) ...

The part "... pages.uid IN (2,5,6,20,21,22,29,30,31,3,4,8,9,16,1)... " is a list of pages-uid's to search. This list is based on the
page-ids in the website-branch of the pagetree and confines the search to that branch and not the whole page-table.
1. ... AND ((tt_content.header LIKE '%menu%' OR tt_content.bodytext LIKE '%menu%' OR tt_content.imagecaption LIKE '%menu%') AND (tt_content.header

LIKE '%backend%' OR tt_content.bodytext LIKE '%backend%' OR tt_content.imagecaption LIKE '%backend%')) GROUP BY pages.uid

2. ... AND ((tt_content.header LIKE '%menu backend%' OR tt_content.bodytext LIKE '%menu backend%' OR tt_content.imagecaption LIKE '%menu backend%'))
GROUP BY pages.uid

3. ... AND ((tt_content.header LIKE '%menu%' OR tt_content.bodytext LIKE '%menu%' OR tt_content.imagecaption LIKE '%menu%') OR (tt_content.header LIKE
'%backend%' OR tt_content.bodytext LIKE '%backend%' OR tt_content.imagecaption LIKE '%backend%')) GROUP BY pages.uid

4. ... AND ((tt_content.header LIKE '%menu%' OR tt_content.bodytext LIKE '%menu%' OR tt_content.imagecaption LIKE '%menu%') OR (tt_content.header LIKE
'%backend%' OR tt_content.bodytext LIKE '%backend%' OR tt_content.imagecaption LIKE '%backend%') AND NOT (tt_content.header LIKE '%content%' OR
tt_content.bodytext LIKE '%content%' OR tt_content.imagecaption LIKE '%content%')) GROUP BY pages.uid

Notice that upper and lowercase does not matter. Also 'menu' as searchword will find 'menu', 'menus', 'menuitems' etc.

USER and USER_INT:
This calls either a PHP-function or a method in a class. This is very useful if you want to incorporate you own data processing
or content.

Basically this a userdefined cObject, because it's just a call to a function or method you control!

An important thing to know is that if you call a method in a class (which is of course instantiated as an object) the internal
variable 'cObj' of that class is set with a reference to the parent cObj. See the example_callfunction.php file for an example of
how this may be usefull for you. Basically it offers you an API of functions which are more or less relevant for you. Refer to
the “Include PHP scripts” section in this document.

It's a little like the PHP_SCRIPT concept but this is somehow cleaner, because it's a call to a function previously defined and
not an inclusion of a PHP-script file. So this is recommended.

TSref - 101

If you create this object as USER_INT, it'll be rendered non-cached, outside the main page-rendering. See the
PHP_SCRIPT_INT for details as this is the same concept used there.

Property: Data type: Description: Default:
userFunc function-name The name of the function. If you specify the name with a '->' in, it's

intepreted as a call to a method in a class.
Two parameters are sent: A content variable (which is empty in this case,
but not when used from stdWrap function .postUserFunc and .
preUserFunc) and the second parameter is an array with the properties of
this cObject if any.

Example:
This TypoScript will display all content element headers of a page in
reversed order. Please take a look in
media/scripts/example_callfunction.php!!
(Also demonstrated on the testsite, page

page = PAGE
page.typeNum=0
includeLibs.something =
media/scripts/example_callfunction.php
page.30 = USER
page.30 {
 userFunc = user_various->listContentRecordsOnPage
 reverseOrder = 1
}

includeLibs list of resource (This property applies only if the object is created as USER_INT)
This is a comma-separated list of resources that are included as PHP-
scripts (with include_once() function) if this script is included.
This is possible to do because any include-files will be known before the
scripts are included. That's not the case with the regular PHP_SCRIPT
cObject.

[tsref:(cObject).USER/(cObject).USER_INT]

PHP_SCRIPT:
This includes a PHP-script. You should not name these script ".php" but rather ".inc" as it's meant to be included and not
executed on it's own.

NOTE: This options is ignored if $TYPO3_CONF_VARS["FE"]["noPHPscriptInclude"]=1; is set in localconf.php.

Property: Data type: Description: Default:
file resource File that will be included. This file must be valid PHP-code! It's included

with "include()";

Directions:
1) All content must be put into $content. No output must be echo'ed
out!

2) Call $GLOBALS["TSFE"]->set_no_cache(), if you want to disable
caching of the page. Set this during development! And set it, if the content
you create may not be cached.

NOTE: If you have a parsing error in your include script the $GLOBALS
["TSFE"]->set_no_cache() function is NOT executed and thereby does not
disable caching. Upon a parse-error you must manually clear the page-
cache after you have corrected your error!
3) the array $conf contains the configuration for the PHP_SCRIPT
cObject. Try debug($conf) to see the content printed out for debugging!
See later in this manual for an introduction to writing your own PHP
include-scripts.

[tsref:(cObject).PHP_SCRIPT]

PHP_SCRIPT_INT:
(see PHP_SCRIPT)

TSref - 102

Property: Data type: Description: Default:
file resource File that will be included. This file must be valid PHP-code! It's included

with "include()";

Purpose:
This basically works like PHP_SCRIPT. But the vital difference is that
inserting a PHP_SCRIPT_INT (internal opposed to external, see below)
merely inserts a divider-string in the code and then serializes the current
cObj and puts it in the $GLOBALS["TSFE"]->config[“INTincScript”]-array.
This array is saved with the cached page-content.
Now, the point is, that including a script like this lets you avoid disabling
pagecaching. The reason is that the cached page contains the divider
string and when a “static” page is fetched from cache, it's divided by that
string and the dynamic content object is inserted.
This is the compromise option of all three PHP_SCRIPT-cObjects,
because the page-data is all cached, but still the pagegen.php script is
included, which initializes all the classes, objects and so. What you gain
here is an environment for your script almost exactly the same as
PHP_SCRIPT because your script is called from inside a class tslib_cObj
object. You can work with all functions of the tslib_cObj-class. But still all
the “static” pagecontent is only generated once, cached and only your
script is dynamically rendered.

Rules:
- calls to $GLOBALS["TSFE"]->set_no_cache() and $GLOBALS["TSFE"]-
>set_cache_timeout_default() makes no sense in this situation.
- parsing errors does not interfere with caching
- Be aware that certain global variables may not be set as usual and be
available as usual when working in this mode. Most scripts should work
out-of-the-box with this option though.
- Dependence and use of LOAD_REGISTER is fragile because the
PHP_SCRIPT_INT is not rendered until after the cached content and due
to this changed order of events, use of LOAD_REGISTER may not work.
- You can not nest PHP_SCRIPT_INT and PHP_SCRIPT_EXT in
PHP_SCRIPT_INT. You may nest PHP_SCRIPT cObjects though.

includeLibs list of resource This is a comma-separated list of resources that are included as PHP-
scripts (with include_once() function) if this script is included.
This is possible to do because any include-files will be known before the
scripts are included. That's not the case with the regular PHP_SCRIPT
cObject.

[tsref:(cObject).PHP_SCRIPT_INT]

PHP_SCRIPT_EXT:
(see PHP_SCRIPT)

Property: Data type: Description: Default:
file resource File that will be included. This file must be valid PHP-code! It's included

with "include()";

Purpose:
This works like PHP_SCRIPT_INT, because a divider string is also
inserted in the content for this kind of include-script. But the difference is
that the content is divided as the very last thing before it's output to the
browser.
This basically means that PHP_SCRIPT_EXT (external, because it's
included in the global space in index_ts.php file!!) can output data directly
with echo-statements!
This is a very “raw” version of PHP_SCRIPT because it's not included
from inside an object and you have only very few standard functions from
TYPO3 to call.
This is the fastest option of all three PHP_SCRIPT-cObjects, because the
page-data is all cached and your dynamic content is generated by a raw
php-script

Rules:
- All content can be either 1) echo'ed out directly, or 2) returned in
$content.
- calls to $GLOBALS["TSFE"]->set_no_cache() and $GLOBALS["TSFE"]-
>set_cache_timeout_default() makes no sense in this situation.
- parsing errors does not interfere with caching
- In the global name-space, the array $REC contains the current record
when the file was “inserted” on the page, and $CONF-array contains the
configuration for the script.
- Don't mess with the global vars named $EXTiS_*

TSref - 103

Property: Data type: Description: Default:
includeLibs list of resource This is a comma-separated list of resources that are included as PHP-

scripts (with include_once() function) if this script is included.
This is possible to do because any include-files will be known before the
scripts are included. That's not the case with the regular PHP_SCRIPT
cObject.

[tsref:(cObject).PHP_SCRIPT_EXT]

TEMPLATE:
Property: Data type: Description: Default:

template cObject This must be loaded with the template-code. If not the object returns
nothing.

subparts Array... of
cObject

This is an array of subpart-markers (case-sensitive).
A subpart is defined by two markers in the template. The markers must be
wrapped by "###" on both sides. You may insert the subpart-markers
inside HTML-comment-tags!!

Example:
subparts {
 HELLO = TEXT
 HELLO.value = En subpart er blevet erstattet!!
}

In the templates:
<!-- start of subpart: ###HELLO### -->
This is the HTML.code, that will be loaded in the
register and replaced with the result...
<!-- end ###HELLO### -->

NOTE:
Before the content-objects of each subpart is generated, all subparts in the
array are extracted and loaded into the register so that you can load them
from there later on.
The register-key for each subparts code is "SUBPART_[theSubpartkey]".
In addition the current-value is loaded with the content of each subpart just
before the cObject for the subpart is parsed. That makes it quite easy to
load the subpart of the cObject (eg: ".current=1")
Eg. this subpart above has the register-key "SUBPART_HELLO".
This is valid ONLY if the property .nonCachedSubst is not set! (see below)

relPathPrefix string / properties Finds all relative references (eg. to images or stylesheets) and prefixes
this value.
If you specify properties (uppercase) these will match HTML tags and
specify alternative paths for them. See example below.
If the property is named "style" it will set alternative path for the "url()"
wrapper that may be in <style> sections.

Example:
page.10 = TEMPLATE
page.10 {
 template = FILE
 template.file = fileadmin/template.html
 relPathPrefix = fileadmin/
 relPathPrefix.IMG = fileadmin/img/
}

Inthis example all relative paths found are prefixed "fileadmin/" unless it
was the src attribute of an img tag in which case the path prefixed is
"fileadmin/img/"

marks Array... of
cObject

This is an array of marks-markers (case-sensitive).
A mark is defined by one markers in the template. The marker must be
wrapped by "###" on both sides. Opposite to subparts, you may NOT
insert the subpart-markers inside HTML-comment-tags! (They will not be
removed).
Marks are substituted bya str_replace-function. The subparts loaded in the
register is available also to the cObjects of markers (only if .
nonCachedSubst is not set!).

TSref - 104

Property: Data type: Description: Default:
wraps Array... of

cObject
This is an array of wraps-markers (case-sensitive).
This is shown best by an example:
Example:
subparts {
 MYLINK = TEXT
 MYLINK.value = |
}

In the template:
This is <!--###MYLINK###-->a link to my<!--
###MYLINK###--> page!

In this example the MYLINK subpart will be substituted by the wrap which
is the content returned by the MYLINK cObject.

workOnSubpart string This is an optional definition of a subpart, that we decide to work on. In
other words; if you define this value that subpart is extracted from the
template and is the basis for this whole templateobject.

markerWrap wrap This is the wrap the markers is wrapped with. The default value is ### |
resulting in the markers to be presented as ###[marker_key]###.
Any whitespace around the wrap-items is stripped before they are set
around the marker_key.

|

substMarksSeparatel
y

boolean If set, then marks are substituted in the content AFTER the substitution of
subparts and wraps.
Normally marks are not substituted inside of subparts and wraps when you
are using the default cached mode of the TEMPLATE cObject. That is a
problem if you have marks inside of subparts! But setting this flag will
make the marker-substitution a non-cached, subsequent process.
Another solution is to turn of caching, see below.

nonCachedSubst boolean If set, then the substitution mode of this cObject is totally different.
Normally the raw template is read and divided into the sections denoted by
the marks, subparts and wraps keys. The good thing is high speed,
because this “pre-parsed” template is cached. The bad thing is that
templates that depends on incremental substition (where the order of
substition is important) will not work so well.
By setting this flag, markers are first substituted by str_replace in the
template - one by one. Then the subparts are substituted one by one. And
finally the wraps one by one.
Obviously you loose the ability to refer to other parts in the template with
the register-keys as described above.

[tsref:(cObject).TEMPLATE]

Example:

page.10 = TEMPLATE
page.10 {
 template = FILE
 template.file = fileadmin/test.tmpl
 subparts {
 HELLO = TEXT
 HELLO.value = This is the replaced subpart-code
 }
 marks {
 Testmark = TEXT
 Testmark.value = This is replacing a simple marker in the HTML-code
 }
 workOnSubpart = DOCUMENT
}

In this example a template named test.tmpl is loaded.

MULTIMEDIA:
Property: Data type: Description: Default:

file resource /stdWrap The multimedia file. Types are:
txt, html, htm: Inserted directly
class: Java-applet
swf: Flash animation
swa, dcr: ShockWave Animation
wav,au: Sound
avi,mov,asf,mpg,wmv: Movies (AVI, QuickTime, MPEG4)

TSref - 105

Property: Data type: Description: Default:
params string /stdWrap This is parameters for the multimedia-objects. Use this to enter stuff like

with and height:

Example:
width=200
height=300

... will generate a tag like '<embed width="200" height="300">'
height=

An empty string will remove the parameter from the embed-tag

stdWrap ->stdWrap
[tsref:(cObject).MULTIMEDIA]

au, wav:

width of control (default 200)

height of control (default 16)

loop = true / false

autostart = true/false

avi,mov,asf,mpg,wmv:

width of control (default 200)

height of control (default 200)

autostart = true/false (not "mov", see below for example)

swf,swa,dcr:

width (browserdefault approx. 200)

height (browserdefault approx. 200)

quality (default "high")

class:

width (default 200)

height (default 200)

QuickTime (mov) example:
WIDTH=256
HEIGHT=208
autoplay=TRUE
CONTROLLER=true
LOOP=false
PLUGINSPAGE= http://www.apple.com/quicktime/

EDITPANEL:
This content object is inserted only if a backend user is logged in and if that user has enabled “Display Edit Icons” in the front
end Admin Panel. If the edit panel is inserted, page caching is disabled as the edit panel offers editing feature only available
for backend users.

The edit panel inserts icons for moving, editing, deleting, hiding and creating records.

Property: Data type: Description: Default:
label string Title for the panel. You can insert the record title with %s

Example:
Section: %s

TSref - 106

Property: Data type: Description: Default:
allow string Define which functions are accessible. Further this list may be reduced, if

the BE_USER does not have permission to perform the action
Values should be listed separated by comma. This is the options you can
choose between:
toolbar,edit,new,delete,move,hide
(toolbar is a general list of icons regarding the page, so use this for
pagerecords only)

newRecordFromTabl
e

string Will display a panel for creation of new element (in the top of list) on the
page from that table.

newRecordInPid int Define a page ID where new records (except new pages) will be created.

line boolean / int If set, a black line will appear after the panel. This value will indicate the
distance from the black line to the panel

edit.displayRecord boolean If set, then the record edited is displayed above the editing form.

onlyCurrentPid boolean If set, only records with a pid matching the current id (TSFE->id) will be
shown with the panel.

innerWrap wrap Wraps the edit panel

outerWrap wrap Wraps the whole edit panel including the black line (if configured)

previewBorder boolean / int If set, the hidden/starttime/endtime/fe_user elements which are previewed
will have a border around.
The integer value denotes the thickness of the border

previewBorder.inner
Wrap
previewBorder.outer
Wrap
previewBorder.color

wrap / HTML color innerWrap wraps the content elements (including the icons) inside the
preview border (an HTML table).

outerWrap wraps the whole content element including the border.

color denotes the color of the border.
[tsref:(cObject).EDITPANEL]

TSref - 107

GIFBUILDER
GIFBUILDER:
GIFBUILDER is a object, which is used in many situations for creating gif-files. Anywhere the ->GIFBUILDER object is
mentioned, this is the properties that apply.

NOTE (+calc):
When ever the "+calc"-function is added to a value in the data type of the properties underneath, you can use the dimensions
of TEXT and IMAGE-objects from the GifBuilderObj-array. This is done by inserting a tag like this: "[10.w]" or "[10.h]", where
"10" is the GifBuilderObj-number in the array and "w"/"h" signifies either width or height of the object.

See this example (cut from "styles.content (default)"):
styles.header.gfx1 = IMAGE
styles.header.gfx1 {
 wrap = {$styles.header.gfx1.wrap}
 file = GIFBUILDER
 file {
 XY = [10.w]+10 ,{$styles.header.gfx1.itemH}
 backColor = {$styles.header.gfx1.bgCol}
 reduceColors = {$styles.header.gfx1.reduceColors}
 10 = TEXT
 10 {
 text.current = 1
 text.crop = {$styles.header.gfx1.maxChars}
 fontSize = {$styles.header.gfx1.fontSize}
 fontFile = {$styles.header.gfx1.file.fontFile}
 fontColor = {$styles.header.gfx1.fontColor}
 offset = {$styles.header.gfx1.fontOffset}
 }
 }
}

As you see, the gif-image has a width defined as the width of the text printed onto it + 10 pixels. The height is fixed by the
value of the constant {$styles.header.gfx1.itemH}

The “_GIFBUILDER” Top Level Object
You can configure some global settings for GIFBUILDER by a top level object named “_GIFBUILDER”. One of the available
properties of the global GIFBUILDER configuration is “charRangeMap”.

.charRangeMap

By this property you can globally configure mapping of font files for certain character ranges. For instance you might need
GIFBUILDER to produce gif files with a certain font for latin characters while you need to use another true type font for
Japanese glyphs. So what you need is to specify the usage of another font file when characters fall into another range of
Unicode values.

In the GIFBUILDER object this is possible with the “splitRendering” option but if you have hundreds of GIFBUILDER objects
around your site it is not very efficient to add 5-10 lines of configuration for each time you render text. Therefore this global
setting allows you to match the basename of the main font face with an alternative font.

Property: Data type: Description: Default:
[array] string Basename of font file to match for this configuration. Notice that

only the filename of the font file is used - the path is stripped off.
This is done to make matching easier and avoid problems when
font files might move to other locations in extensions etc.

So if you use the font file “EXT:myext/fonts/arial.ttf” or
“t3lib/fonts/arial.ttf” both of them will match with this configuration.

The key:
The value of the array key will be the key used when forcing the
configuration into “splitRendering” configuration of the individual
GIFBUILDER objects. In the example below the key is “123”.
Notice; If the key is already found in the local GIFBUILDER
configuration the content of that key is respected and not
overridden. Thus you can make local configurations which
override the global setting.

Example:
_GIFBUILDER.charRangeMap {
 123 = arial.ttf
....

TSref - 108

Property: Data type: Description: Default:
[array].charMapConfig TEXT /

splitRendering.
[array]
configuration

splitRendering configuration to set. See GIFBUILDER TEXT
object for details.

Example:

_GIFBUILDER.charRangeMap {
 123 = arial.ttf
 123 {
 charMapConfig {
 fontFile = t3lib/fonts/vera.ttf
 value = -65
 fontSize = 45
 }
 fontSizeMultiplicator = 2.3
 }
}

This example configuration shows that GIFBUILDER TEXT
objects with font faces matching “arial.ttf” will have a
splitConfiguration that uses “t3lib/fonts/vera.ttf” for all characters
that fall below/equal to 65 in Unicode value.

[array].fontSizeMultiplicator double If set, this will take the font size of the TEXT GIFBUILDER object
and multiply with this amount (xx.xx) and override the “fontSize”
property inside “charMapConfig”.

[array].pixelSpaceFontSizeRef double If set, this will multiply the four [x/y]Space[Before/After] properties
of split rendering with the relationship between the fontsize and
this value.
In other words; Since pixel space may vary depending on the font
size used you can simply specify by this value at what fontsize the
pixel space settings are optimized and for other fontsizes this will
automatically be adjusted according to this font size.

Example:
_GIFBUILDER.charRangeMap {
 123 = arial.ttf
 123 {
 charMapConfig {
 fontFile = t3lib/fonts/vera.ttf
 value = 48-57
 color = green
 xSpaceBefore = 3
 xSpaceAfter = 3
 }
 pixelSpaceFontSizeRef = 24
 }
}

In this example xSpaceBefore and xSpaceAfter will be “3” when
the font size is 24. If this configuration is used on a GIFBUILDER
TEXT object where the font size is only 16 the spacing values will
be corrected by “16/24”, effectively reducing the pixelspace to “2”
in that case.

[tsref:_GIFBUILDER.charRangeMap]

Objectnames in this section:
Whenever you see a reference to anything named an "object" in this section it's a reference to a "GifBuilderObj" and not
the "cObjects" from the previous section. Confusion could happen, because both "IMAGE" and "TEXT" is a object in both
areas.

Property: Data type: Description: Default:
1,2,3,4... GifBuilderObj

+ .if (->if)
.if (->if) is a property of all gifbuilder-objects. If the property is present and
NOT set, the object is NOT rendered! This corresponds to the
functionallity of ".if" of the stdWrap-function.

XY x,y +calc Size of the gif-file. 100,20

format "gif" / "jpg" Output type.
"jpg"/"jpeg" = jpg-image

gif

reduceColors posint (1-255) Reduce the number of colors (if gif-file)

transparentBackgrou
nd

boolean Set this flag to render the background transparent. TYPO3 makes the
color found at position 0,0 of the image (upper left corner) transparent.
If you render text you should leave the niceText option OFF as the result
with probably be more precise without the niceText antialiasing hack

TSref - 109

Property: Data type: Description: Default:
transparentColor HTMLColor /

stdWrap
Specify a color that should be transparent

Example-values:
#ffffcc
red
255,255,127

Option:
transparentColor.closest = 1
This will allow for the closest color to be matched instead. You may need
this if you image is not garanteed "clean".

NOTE: You may experience that this doesn't work if you use
reduceColors-option or render text with niceText-option.

quality posint (10-100) JPG-quality (if “.format” = jpg/jpeg)

backColor GraphicColor
/stdWrap

Background color for the gif white

offset x,y +calc Offset all objects on the gif. 0,0

workArea x,y,w,h + calc Define the workarea on the giffile. All the GifBuilderObj's will see this as
the dimensions of the gif-file regarding alignment, overlaying of images an
so on. Only will TEXT-objects exceeding the boundaries of the workarea
print outside this area.

maxWidth pixels Maximal width of gif-file

maxHeight pixels Maximal heigth of gif-file
[tsref:->GIFBUILDER]

TEXT:
Property: Data type: Description: Default:

text stdWrap This is text text-string on the gif-file. The item is rendered only if this string
is not empty.
The cObj->data-array is loaded with the page-record, if for example the
GIFBUILDER-object is used by GMENU or IMGMENU

textMaxLength int The maximum length of the text. This is just a natural break that prevents
incidental rendering of very long texts!

100

maxWidth pixels Sets the maximum width in pixels, the text must be. Reduces the fontSize
if the text does not fit within this width.

Does not support setting alternative fontSizes in splitRendering options.

(By Rene Fritz <r.fritz@colorcube.de>)

doNotStripHTML boolean If set, HTML-tags in the string inserted are NOT removed. Any other way
HTML-code is removed by default!

0

fontSize posint Font size 12

fontColor GraphicColor /
stdWrap

Font color black

fontFile resource Font face (truetype font you can upload!!) Nimbus (Arial-
clone)

angle degree Rotation degrees of the text.

NOTE: Angle is not available if spacing/wordSpacing is set.

0
Range: -90 til 90

align align Alignment of the text left

offset x,y +calc Offset of the text 0,0

antiAlias Boolean FreeType antialiasing. Notice, the default mode is "on"!

Note: This option is not available if .niceText is enabled

1

iterations posint How many times the text should be "printed" onto it self. This will add the
effect of bold text.

Note: This option is not available if .niceText is enabled

1

spacing posint Pixel-distance between letters. This may render ugly! 0

wordSpacing posint Pixel-distance between words. = ".spacing"*2

hide boolean If this is true, the text is NOT printed.
This feature may be used if you need a shadow-object to base a shadow
on the text, but do not want the text to print.

0

TSref - 110

Property: Data type: Description: Default:
hideButCreateMap boolean If this option is set, the text will not be rendered. Shadows and emboss

will, though, so don't apply these!! But this feature is also meant only to
enable a text to generate the imageMap coordinates without rendering
itself.

emboss GifBuilderObj-
>EMBOSS

shadow GifBuilderObj-
>SHADOW

outline GifBuilderObj-
>OUTLINE

imgMap ->IMGMAP

->stdWrap
properties for
"altText" and
"titleText" in this
case

niceText boolean This is a very popular feature that helps to render small letters much nicer
than the freetype library can normally do. But it also loads the system very
much!
The principle of this function is to create a black/white giffile in twice or
more times the size of the actual gif-file and then print the text onto this is
a scaled dimension. Afterwards ImageMagick (IM) scales down the mask
and masks the font color down on the original gif-file through the
temporary mask.
The fact that the font is actually rendered in the double size and scaled
down adds a more homogenous shape to the lettes. Some fonts are more
critical than others though. If you do not need the quality, then don't use
the function.

Some properties:
.before = IM-params before scale
.after = IM-params after scale
.sharpen = sharpen-value for the mask (after scaling), integer 0-99 (this
enables you to make the text crisper if it's too blurred!)
.scaleFactor = scaling-factor, int 2-5

TSref - 111

Property: Data type: Description: Default:
splitRendering.comp
X
splitRendering.comp
Y
splitRendering.[array]

Split the rendering of a string into separate processes with individual
configurations. By this method a certain range of characters can be
rendered with another font face or size. This is very useful if you want to
use separate fonts for strings where you have latin characters combined
with eg. Japanese and there is a separate font file for each.
You can also render keywords in another font/size/color.

Properties:
splitRendering.compX = Additional pixelspace between parts, x direction
splitRendering.compY = Additional pixelspace between parts, y direction
splitRendering.[array] = keyword [charRange, highlightWord]
splitRendering.[array] {
 fontFile = Alternative font file for this rendering
 fontSize = Alternative font size for this rendering
 color = Alternative color for this rendering, works ONLY without
“niceText”
 xSpaceBefore = x-Space before this part
 xSpaceAfter = x-Space after this part
 ySpaceBefore = y-Space before this part
 ySpaceAfter = y-Space after this part
}

Keyword: charRange
splitRendering.[array].value = Commaseparated list of character ranges
(eg. “100-200”) given as Unicode character numbers. The list accepts
optional starting and ending points, eg. “ - 200” or “ 200 -” and single
values, eg. “65, 66, 67”

Keyword: highlightWord
splitRendering.[array].value = Word to highlight, makes a case sensitive
search for this.

Limitations:
● The pixelcompensation values are not corrected for scale factor used

with niceText. Basically this means that when niceText is used, these
values will have only the half effect.

● When word spacing is used the “highlightWord” mode doesn't work.
● The color override works only without “niceText”.

Example:
 10.splitRendering.compX = 2
 10.splitRendering.compY = -2
 10.splitRendering.10 = charRange
 10.splitRendering.10 {
 value = 200-380 , 65, 66
 fontSize = 50
 fontFile = t3lib/fonts/nimbus.ttf
 xSpaceBefore = 30
 }
 10.splitRendering.20 = highlightWord
 10.splitRendering.20 {
 value = TheWord
 color = red
 }

[tsref:->GIFBUILDER.(GBObj).TEXT]

SHADOW:
Property: Data type: Description: Default:

textObjNum pos-int Must point to the TEXT-object if these shadow-properties are not
properties to a TEXT-object directly ("stand-alone-shadow"). Then the
shadow needs to know which TEXT-object it should be a shadow of!
If - on the other hand - the shadow is a property to a text-object, this
property is not needed.

offset x,y Shadow offset

color GraphicColor Shadow color

blur posint (1-99) Blurring of the shadow. Above 40 only values of 40,50,60,70,80,90
means something.

NOTE: Unfortunately the blurring capabilities of ImageMagick is not very
mature in the version 4.2.9. This is addressed in the later version 5.2.0
where a gaussian blur-function is added. BUT as we do cannot use the
latest ImageMagick development yet, this is not utilized so far.

TSref - 112

Property: Data type: Description: Default:
opacity posint (1-100) Opacity (transparency^-1)

100% opacity = 0% transparency). Only active with a value for blur.

intensity posint(0-100) How "massive" the shadow is. This value can - if it has a high value
combined with a blurred shadow - create a kind of soft-edged outline.

[tsref:->GIFBUILDER.(GBObj).SHADOW]

EMBOSS:
Emboss is actually two shadows offset in opposite directions and with different colors as to create an effect of light casted
onto an embossed text.

Property: Data type: Description: Default:
textObjNum pos-int Must point to the TEXT-object if these shadow-properties are not

properties to a TEXT-object directly ("stand-alone-shadow"). Then the
shadow needs to know which TEXT-object it should be a shadow of!
If - on the other hand - the shadow is a property to a text-object, this
property is not needed.

offset x,y Offset of the emboss

highColor GraphicColor Upper border-color

lowColor GraphicColor lower border-color

blur posint (1-99) Blurring of the shadow. Above 40 only values of 40,50,60,70,80,90
means something.

opacity posint (1-100) Opacity (transparency^-1)
100% opacity = 0% transparency). Only active with a value for blur.

intensity posint(0-100) How "massive" the emboss is. This value can - if it has a high value
combined with a blurred shadow - create a kind of soft-edged outline.

[tsref:->GIFBUILDER.(GBObj).EMBOSS]

OUTLINE:
This outline normally renderes quite ugly as it's done by print 4 or 8 texts underneath the text in question. Try to use a
shadow with a high intensity. That works better!

Property: Data type: Description: Default:
textObjNum pos-int Must point to the TEXT-object if these shadow-properties are not

properties to a TEXT-object directly ("stand-alone-shadow"). Then the
shadow needs to know which TEXT-object it should be a shadow of!
If - on the other hand - the shadow is a property to a text-object, this
property is not needed.

thickness x,y Thickness in each direction, range 1-2

color GraphicColor Outline color
[tsref:->GIFBUILDER.(GBObj).OUTLINE]

BOX:
Property: Data type: Description: Default:

dimensions x,y,w,h +calc Dimensions of a filled box.
x,y is the offset.
w,h is the dimensions. Dimensions of 1 will result in 1-pixel wide lines!

color GraphicColor fill-color black

align VHalign
[tsref:->GIFBUILDER.(GBObj).BOX]

IMAGE:
Property: Data type: Description: Default:

file imgResource The imagefile

offset x,y +calc Offset 0,0

tile x,y tile x,y times.
Maximum times is 20 each direction. If you need more, use a larger
image.

TSref - 113

Property: Data type: Description: Default:
align VHalign

mask imgResource Optional mask-image for the imagefile.
[tsref:->GIFBUILDER.(GBObj).IMAGE]

EFFECT:
.value = [Varnavn] = [value] | [Varnavn] = [value]

Example:
20 = EFFECT
20.value = gamme=1.3 | flip | rotate=180

Property: Data type: Description: Default:
gamma 0.5 - 3.0

blur 1-99

sharpen 1-99

solarize 0-99

swirl 0-100

wave ampli , length

charcoal 0-100

gray -

edge 0-99

emboss -

flip - Vertical flipping

flop - Horizontal flipping

rotate 0-360 Rotation

colors 2-255

shear -90 - 90 Horizontal shearing

invert - invert the colors
[tsref:->GIFBUILDER.(GBObj).EFFECT]

WORKAREA:
Sets another workarea

Property: Data type: Description: Default:
set x,y,w,h + calc

clear (isset)
[tsref:->GIFBUILDER.(GBObj).WORKAREA]

CROP:
NOTE: This object resets workArea to the new dimensiosn of the image!

Property: Data type: Description: Default:
backColor GraphicColor The original

backColor

align VHalign

crop x,y,v,h + calc x,y is offset of the crop-frame,
v,h is the dimensions

[tsref:->GIFBUILDER.(GBObj).CROP]

SCALE:
NOTE: This object resets workArea to the new dimensiosn of the image!

TSref - 114

Property: Data type: Description: Default:
width pixels + calc

height pixels + calc

params ImageMagickParam
s

[tsref:->GIFBUILDER.(GBObj).SCALE]

ADJUST:
This lets you adjust the input-levels like in Photoshops "levels"-dialog. If you need to adjust gamma, look at the EFFECT-
object.

Example:
20 = ADJUST
20.value = inputLevels = 13,230

Property: Data type: Description: Default:
inputLevels low,high

outputLevels low, high

autoLevels -
[tsref:->GIFBUILDER.(GBObj).ADJUST]

NON-GifBuilderObj:

IMGMAP:
This is used by the GifBuilderObj "TEXT" to create a image-map for the gif-file. This is especially used with the IMGMENU
menuobject.

Property: Data type: Description: Default:
url url url to link For IMGMENU

menu objects
provided
automatically

target target target for link For IMGMENU
menu objects
provided
automatically

noBlur Boolean Normally graphical links are "blurred" if the browser is MSIE. This
removes the ugly box around a link.
If this property is set, the link is NOT blurred with "onFocus".

For IMGMENU
menu objects
provided
automatically

explode x,y This "explodes" or "implodes" the image-map. Useful to let the hot area
cover a little more than just the letters of the text.

altText atring Value of the alt-attribute.

(Used from TEXT Gifbuilding objects, this has stdWrap properties.
Otherwise not)

titleText string Value of the title attribute.

(Used from TEXT Gifbuilding objects, this has stdWrap properties.
Otherwise not)

[tsref:->IMGMAP]

TSref - 115

MENU Objects
Common properties:
These properties are in common for all menu objects if not otherways stated!

Property: Data type: Description: Default:
sectionIndex (see below)

alternativeSortingFiel
d

Normally the menuitems are sorted by the fields "sorting" in the pages-
and tt_content-table. Here you can enter a list of fields that is used in the
SQL- "ORDER BY" statement instead.

Examples (for "pages" table):
alternativeSortingField = title desc
(This will render the menu in reversed alphabetical order)

LIMITATIONS:
This property works with normal menus, sectionsIndex menus and
special-menus of type "directory".

minItems int The minimum items in the menu. If the number of pages does not reach
this level, a dummy-page with the title "..." and uid=[currentpage_id] is
inserted.

Takes precedence over HMENU.minItems

maxItems int The maximum items in the menu. More items will be ignored.

Takes precedence over HMENU.maxItems

begin int +calc The first item in the menu.

Example:
This results in a menu, where the first two items are skipped starting with
item number 3:
 begin = 3

Takes precedence over HMENU.begin

JSWindow boolean If set, the links of the menu-items will open by JavaScript in a pop-up
window.

.newWindow boolean, that lets every menuitem open in its own window
opposite to opening in the same window for each click.

.params is the list of parameters sent to the JavaScript open-window
function, eg:
width=200,height=300,status=0,menubar=0

NOTE: Does not work with JSMENU's

imgNamePrefix string prefix for the imagenames. This prefix is appended with the uid of the
page.

"img"

imgNameNotRandom boolean If set, the image names of menuitems is not randomly assigned. Usefull
switch if you're manipulating these images with some external JavaScript

NOTE: Don't set this if you're working with a menu with sectionIndex! In
that case you need special unique names of items based on something
else than the uid of the parent page of course!

debugItemConf Outputs (by the debug()-function) the configuration arrays for each
menuitem. Useful to debug optionSplit things and such...
Applies to GMENU, TMENU, IMGMENU

overrideId integer (page-id) If set, then all links in the menu will point to this pageid. Instead the real
uid of the page is sent by the parameter "&real_uid=[uid]".
This feature is smart, if you have inserted a menu from somewhere else,
perhaps a shared menu, but wants the menuitems to call the same page,
which then generates a proper output based on the real_uid.
Applies to GMENU, TMENU, IMGMENU

addParams string Additional parameter for the menu-links.

Example:
"&some_var=some%20value"
Must be rawurlencoded.
Applies to GMENU, TMENU, IMGMENU

TSref - 116

Property: Data type: Description: Default:
showAccessRestricte
dPages

integer (page id) /
keyword “NONE”

If set, pages in the menu will include pages with frontend user group
access enabled. However the page is of course not accessible and
therefore the URL in the menu will be linked to the page with the ID of this
value. On that page you could put a login form or other message.
If the value is “NONE” the link will not be changed and the site will
perform page-not-found handling when clicked (which can be used to
capture the event and act accordingly of course).

Properties:
.addParam = Additional parameter for the URL, which can hold two
markers; ###RETURN_URL### which will be substituted with the link the
page would have had if it had been accessible and ###PAGE_ID###
holding the page id of the page coming from (could be used to look up
which fe_groups was required for access.

Example:
showAccessRestrictedPages = 22
showAccessRestrictedPages.addParams =
&return_url=###RETURN_URL###&pageId=###PAGE_ID###

The example will link access restricted menu items to page id 22 with the
return URL in the GET var “return_url” and the page id in the GET var
“pageId”.

itemArrayProcFunc function-name The first variable passed to this function is the “menuArr” array with the
menuitems as they are collected based on the type of menu.
You're free to manipulate or add to this array as you like. Just remember
to return the array again!

Note:
.parentObj property is hardcoded to be a reference to the calling
tslib_menu object. Here you'll find eg. ->id to be the uid of the menu item
generating a submenu and such.

Presetting element state
You can override element states like SPC, IFSUB, ACT, CUR or USR by
setting the key ITEM_STATE in the page records. See cObject
HMENU/special=userdefined for more information.

TSref - 117

Property: Data type: Description: Default:
submenuObjSuffixes string

+optionSplit
Defines a suffix for alternative sub-level menu objects. Useful to create
special submenus depending on their parent menu element. See example
below.

Example:
This example will generate a menu where the menu objects for the
second level will differ depending on the number of the first level item for
which the submenu is rendered. The second level objects used are “2”
(the default), “2a” and “2b” (the alternatives). Which of them is used is
defined by “1.submenuObjSuffixes” which has the configuration “a |*| |*|
b”. This configuration means that the first menu element will use
configuration “2a” and the last will use “2b” while anything in between will
use “2” (no suffix applied)

page.200 = HMENU
page.200 {
 1 = TMENU
 1.wrap = <div style="width:200px; border: 1px
solid;">|</div>
 1.expAll = 1
 1.submenuObjSuffixes = a |*| |*| b
 1.NO.allWrap = |

 2 = TMENU
 2.NO.allWrap = <div style="background:red;">|</div>
 2a = TMENU
 2a.NO.allWrap = <div style="background:yellow;">|
</div>

 2b = TMENU
 2b.NO.allWrap = <div style="background:green;">|
</div>
}

The result can be seen in the image below (applied on the testsite
package):

Applies to GMENU, TMENU, GMENU_LAYERS, TMENU_LAYERS and
GMENU_FOLDOUT on >= 2nd level in a menu.

[tsref:(cObject).HMENU.(mObj)]

Common item states for TMENU, GMENU and IMGMENU series:
These properties are in common for TMENU, GMENU and IMGMENU series. That means they are not used by for instance
the JSMENU.

TSref - 118

Property: Data type: Description: Default:
NO Boolean / (config) The default “Normal” state rendering of Item. This is required for all

menus.
If you specify properties for the “NO” property you do not have to set it “1”.
Otherwise with no properties setting “NO=1” will render the menu
anyways (for TMENU this may make sense).

The simplest menu TYPO3 can generate is then:

page.20 = HMENU
page.20.1 = TMENU
page.20.1.NO = 1

That will be pure <a> tags wrapped around page titles.

1

IFSUB
IFSUBRO

Boolean / (config) Enable/Configuration for menu items which has subpages 0

ACT
ACTRO

Boolean / (config) Enable/Configuration for menu items which are found in the rootLine 0

ACTIFSUB
ACTIFSUBRO

Boolean / (config) Enable/Configuration for menu items which are found in the rootLine and
has subpages

0

CUR
CURRO

Boolean / (config) Enable/Configuration for a menu item if the item is the current page. 0

CURIFSUB
CURIFSUBRO

Boolean / (config) Enable/Configuration for a menu item if the item is the current page and
has subpages.

0

USR
USRRO

Boolean / (config) Enable/Configuration for menu items which are access restricted pages
that a user has access to.

0

SPC Boolean / (config) Enable/Configuration for 'Spacer' pages.
Spacers are pages of the doktype "Spacer". These are not viewable
pages but "placeholders" which can be used to divide menuitems.

Note: Rollovers doesn't work with spacers, if you use GMENU!

0

USERDEF1
USERDEF1RO

Boolean / (config) Userdefined, see .itemArrayProcFunc for details on how to use this.
You can set the ITEM_STATE values USERDEF1 and USERDEF2
(+...RO) from a script/userfunction processing the menu item array. See
HMENU/special=userdefined or the property .itemArrayProcFunc of the
menu objects.

USERDEF2
USERDEF2RO

Boolean / (config) (See above)

[tsref:(cObject).HMENU.(mObj_itemStates)]

Order of priority: USERDEF2, USERDEF1, SPC, USR, CURIFSUB, CUR, ACTIFSUB, ACT, IFSUB

All *RO states requires the default “RO” configuration to be set up.

[menuObj].sectionIndex
This is a property that all menuObj's share. If it's set, then the menu will not consist of links to pages on the "next level" but
rather links to the parent page to the menu, but in addition "#"-links to the cObjects rendered on the page. In other words, the
menuitems will be links to the content elements (with colPos=0!) on the page. A section index.

.sectionIndex = [boolean]

If you set this, all content elements (from tt_content table) of "Column" = "Normal" and the "Index"-check box clicked are
selected. This corresponds to the "Menu/Sitemap" content element when "Section index" is selected as type.

.sectionIndex.type = "all" / "header"

If you set this additional property to "all", then the "Index"-checkbox is not considered and all content elements with colPos=0
is selected.

If this property is "header" then only content elements with a visible header-layout (and a non-empty 'header'-field!) is
selected. In other words, if the header layout of an element is set to "Hidden" then the page will not appear in the menu.

The data-record /Behind the scene:

When the menu-records are selected it works like this: The parent page record is used as the "base" for the menu-record.
That means that any "no_cache" or "target"-properties of the parent page is used for the whole menu.

But of course some fields from the tt_content records are transfered: This is how it mapped:
$temp[$row[uid]]=$basePageRow;
$temp[$row[uid]]["title"]=$row["header"];
$temp[$row[uid]]["subtitle"]=$row["subheader"];
$temp[$row[uid]]["starttime"]=$row["starttime"];
$temp[$row[uid]]["endtime"]=$row["endtime"];

TSref - 119

$temp[$row[uid]]["fe_group"]=$row["fe_group"];
$temp[$row[uid]]["media"]=$row["media"];
$temp[$row[uid]]["header_layout"]=$row["header_layout"];
$temp[$row[uid]]["bodytext"]=$row["bodytext"];
$temp[$row[uid]]["image"]=$row["image"];
$temp[$row[uid]]["sectionIndex_uid"]=$row["uid"];

Basically this shows that

- the field "header" and "subheader" from tt_content are mapped to "title" and "subtitle" in the pages-record. Thus you
shouldn't need to change your standard menu-objects to fit this thing...

- the fields "starttime", "endtime", "fe_group", "media" from tt_content are mapped to the same fields in a pages-record.

- the fields "header_layout", "bodytext" and "image" are mapped to non-existing fields in the page-record

- a new field, "sectionIndex_uid" is introduced in the page-record which is detected by the function t3lib_tstemplate->linkData
(). If this field is present in a pagerecord, the linkData()-function will prepend a hash-mark and the number of the field.

NOTE:

You cannot create submenus to sectionIndex-menus. That doesn't make any sense as these elements are not pages and
thereby have no "childs".

GMENU:
GMENU works as a object under the cObject "HMENU" and it creates graphical navigation, where each link is a separate gif-
file

Property: Data type: Description: Default:
RO Boolean RollOver configuration enabled / disabled.

If this is true, RO becomes a GIFBUILDER-object defining the layout of
the menuitem when the mouse rolls over it

0

expAll Boolean If this is true, the menu will always show the menu on the level
underneath the menuitem. This corresponds to a situation where a user
has clicked a menuitem and the menu folds out the next level. This can
enable that to happen on all items as default.

collapse Boolean If set, "active" menuitems that has expanded the next level on the menu
will now collapse that menu again.

accessKey Boolean If set access-keys are set on the menu-links

noBlur Boolean Normally graphical links are "blurred" if the browser is MSIE. Blurring
removes the ugly box around a clicked link.
If this property is set, the link is NOT blurred (browser-default) with
"onFocus".

target target Target of the menulinks self

forceTypeValue int If set, the &type parameter of the link is forced to this value regardless of
target. Overrides the global equivalent in 'config' if set.

stdWrap ->stdWrap Wraps the whole item using stdWrap

Example:
2 = TMENU
2 {
 stdWrap.dataWrap = <ul class=”{register :
 parentProperty}”> |
 NO {
 ...
 }
}

wrap wrap Wraps only if there were items in the menu!

applyTotalH objNumsList (offset) This adds the total height of the previously generated menuitems to the
offset of the GifBuilderObj's mentioned in this list.

Example:
This is useful it you want to create a menu with individual items but a
common background image that extends to the whole area behind the
menu. Then you should setup the background image in each
GIFBUILDER-object and include the object-number in this list.
Look at the implementation in static_template "styles.gmenu.bug"

applyTotalW objNumsList (offset) This adds the total width of the previously generated menuitems to the
offset of the GifBuilderObj's mentioned in this list.

min x,y (calcInt) Forces the menu as a whole to these minimum dimensions

max x,y (calcInt) Forces the menu as a whole to these maximum dimensions

TSref - 120

Property: Data type: Description: Default:
useLargestItemX boolean If set, then the width of all menuitems will be equal to the largest of them

all.

useLargestItemY boolean If set, then the height of all menuitems will be equal to the largest of them
all.

distributeX int+ If set, the total width of all the menuitems will be equal to this number of
pixels by adding/subtracting an equal amount of pixels to each menu
items width.
Will overrule any setting for ".useLargestItemX"

distributeY int+ If set, the total height of all the menuitems will be equal to this number of
pixels by adding/subtracting an equal amount of pixels to each menu
items height.
Will overrule any setting for ".useLargestItemY"

removeObjectsOfDu
mmy

objNumsList If the menu is forced to a certain minimum dimension, this is a list of
objects in the gifbuilder-object that is removed for this last item. This is
important to do if the menuitems has elements that should only be applied
if the item is actually a menuitem!!

disableAltText boolean If set, the alt-parameter of the images are not set. You can do it manually
by “imgParams” (see below)

IProcFunc function-name The internal array “I” is passed to this function and expected returned as
well. Subsequent to this function call the menu item is compiled by
implode()'ing the array $I[parts] in the passed array. Thus you may modify
this if you need to.
See example on the testsite and in
media/scripts/example_itemArrayProcFunc.php

[Common Item
States, see above]
+ rollover version for
all, except SPC

->GIFBUILDER
+ Additional
properties! See
table below

This is the GIFBUILDER-options for each category of menuitem that can
be generated.

NOTE: For the GMENU series you can also define the RollOver
configuration for the item states. This means that you define the
GIFBUILDER object for the 'Active' state by ACT and the RollOver
GIFBUILDER object for the 'Active' state by ACTRO.
This pattern goes for ALL the states except the SPC state.

SPECIAL:
The ->OptionSplit function is run on the whole GIFBUILDER-configuration
before the items are generated.

[tsref:(cObject).HMENU.(mObj).GMENU]

Additional properties for Menu item states:
These properties are additionally available for the GMENU item states although the main object is declared to be GIFBUILDER.
It is evident that it is an unclean solution to introduce these properties on the same level as the GIFBUILDER object in a single situation like
this. However this is how it irreversibly is and has been for a long time.

Property: Data type: Description: Default:
noLink boolean If set, the item is NOT linked!

imgParams params Parameters for the -tag

altTarget string Alternative target which overrides the target defined for the GMENU

altImgResource imgResouce Defines an alternative image to use. If an image returns here, it will
override any GIFBUILDER configuration.

ATagParams string Additional parameters

ATagTitle string /stdWrap which defines the title attribute of the a-tag. (See TMENUITEM also)

additionalParams string /stdWrap Define parameters that are added to the end of the URL. This must be
code ready to insert after the last parameter.

For details, see typolink->additionalParams

wrap wrap Wrap of the menu item

allWrap wrap /stdWrap Wraps the whole item

subst_elementUid boolean If set, "{elementUid}" is substituted with the item uid.

allStdWrap ->stdWrap stdWrap of the whole item
[tsref:(cObject).HMENU.(mObj).GMENU.(itemState)]

GMENU_LAYERS / TMENU_LAYERS:
GMENU_LAYERS / TMENU_LAYERS works as an extension to GMENU/TMENU, which means the these properties
underneath is additional properties to the ones above.

TSref - 121

The purpose of xMENU_LAYERS is to create 2-level (or more!) menus where the 2nd+ level is shown on a DHTML-layer.
Most features works with modern browsers including Netscape, Microsoft Internet Explorer, Mozilla, Konqueror and Opera.
You can cascade the menus as you like.

NOTE: You must include the library "typo3/sysext/cms/tslib/media/scripts/gmenu_layers.php" (for GMENU_LAYERS) and/or
“typo3/sysext/cms/tslib/media/scripts/tmenu_layers.php” (for TMENU_LAYERS) and you must also expand the
xMENU_LAYERS to the next for the menu to make sense (use the expAll-flag).

Compatibilty: MSIE 4+, Netscape 4+ and 6+, Opera 5+, Konqueror.

Notes:

• Netscape 4 does not support mouseover on the layers.

• Opera seems to have problems with the mouseout event if you roll from an element to a layer. Then the event may not be
fired before entering the layer. It happens only if the layer is placed very close to the trigger element. Problems from this
may be that the rollover state of the items are not reset.

• Possible bug; It has been seen with cascaded layers that Opera may suddently refuse any interaction on the page, even
clicking normal links. It may be a JavaScript error that makes this happen, but as even normalt links are not clickable
anymore, I'm not really sure. Seems to be no problem with single-level menu.

Property: Data type: Description: Default:
layerStyle <DIV>-tag params Parameters for the <DIV>-layer-tags in the HTML-document. You

might probably not need change this.

Example:
position:absolute; VISIBILITY: hidden;

position:absolute;
visibility: hidden;

lockPosition "x" / "y" / "" If this is set to "x" or "y" the menu on the layers is locked and does
not follow the mouse-cursor (which it does if this is not set).
"x" or "y" defines respectively that the summed width (x) or height
(y) is added to the x or y offset of the menu. That means that you
should set this value to "x" if you have a horizontal
GMENU_LAYERS and to "y" if you have a verical menu.

dontFollowMouse boolean If set and lockPosition is blank (so that the menu layer follows the
mouse) then the menu will NOT follow the mouse but still it will
appear where the mouse cursor hit the trigger-element. Usefull if
you don't know the exact positions of elements.

Warning: You should not set displayActiveOnLoad for menus with
this feature enabled (because the absolute position of the layer is
not known).

lockPosition_adjust int A number which is added to the width/height of the menuitems in
order to compensate for eg. hspace or other things between the
images in the GMENU_LAYERS

lockPosition_addSelf boolean Normally the width and height of the items (+lockPosition_adjust)
are summed up after the item has been rendered. This is good if
the direction of the menulayers is right- og downwards.
But if you use directionLeft/directionUp, you might want to add the
width of the items before.
If so, set this flag.

xPosOffset int The offset of the menu from the point where it's "activated" (if
lockPosition is false) / from topleft page corner (if lockPosition is
set)

yPosOffset int As above, but for the y-dimension.

topOffset int The offset of menuitems from top of browser. Should be set rather
than defining it in the .layerStyle property. Must be set in order to
use directionUp.
Used with either lockPosition=x or xPosOffset defined.

leftOffset int The offset of menuitems from left border of browser. Should be
set rather than defining it in the .layerStyle property. Must be set
in order to use directionLeft.
Used with either lockPosition=y or yPosOffset defined.

blankStrEqFalse boolean If set, then the properties topOffset,leftOffset, xPosOffset,
yPosOffset are considered “blank” if they are really blank strings -
not just “zero”. You should enable this if you wish to be able to
work with zero offsets. This is typically the case if you use relative
positioning.

directionLeft boolean Set this, if you want the items to be right-aligned (pop's out
towards the left).
Does not work with Opera at this time because I don't know how
to make Opera read the width of each layer.
If you set the width of the menu-layers in .layerStyles this might
work no matter what.

TSref - 122

Property: Data type: Description: Default:
directionUp boolean Set this, if you want the items to be bottom-aligned (pop's out

upwards instead of downwards).

setFixedWidth int For GMENU_LAYERS the width and heights of the element is
normally known from the graphical item. For TMENU_LAYERS
this cannot be known in the same way. Therefore you can use .
setFixedWidth and .setFixedHeight to set these values to a
number you find reasonable. Of course this may be blasted by the
browsers rendering if the font gets out of proportions etc.
Alternatively you may want to use the property
“relativeToTriggerItem” which will position your menu layers
relative to the item you roll over. This has some drawbacks
though. A middle solution is to use a menu with lockPosition set to
blank and dontFollowMouse set to true. Then you need only
specify either an x or y coordinate to follow and the item will
appear where the mouse hits the element.
Notice: Active if value is NOT a blank str. Setting this value to
zero means that no width is calculated for the items in
GMENU_LAYERS.

setFixedHeight int See “setFixedWidth”. Same, but for height.

bordersWithin l,t,r,b,l,t Keep borders of the layer within these limits in pixels. Zero is 'not
set'
(Syntax: List of integers, evaluated clockwise: Left, Top, Right,
Bottom, Left, Top)

displayActiveOnLoad boolean If set, the submenu-layer of the active menuitem is opened at
page-load. If .freezeMouseover is also set and there is RO defined
for the main menu items, the menuitem belonging to the displayed
submenu is also shown.

Properties:
.onlyOnLoad (boolean)
If set, then the display of the active item will happen only when the
page is loaded. The display will not be restored on mouseout of
other items.

Warning: If you are cascading GMENU_LAYER objects make
sure that all elements before this element (for which you set this
attribute) also has this attribute set!

freezeMouseover boolean If set, any mouseout effect of main menuitems is removed not on
roll-out but when another element is rolled over (or the layer is
hidden/default layer restored)

Properties:
.alwaysKeep (boolean)
If set, the freezed element will always stay, even if the submenu is
hidden.

hideMenuWhenNotOver int+ If set (> 1) then the menu will hide it self whenever a user moves
the cursor away from the menu. The value of this parameter
determines the width (pixels) of the zone around the element until
the mousepointer is considered to be far enough away to hide the
layer.

hideMenuTimer int+ This is the number of milliseconds to wait before the submenu will
disappear if hideMenuWhenNotOver is set

dontHideOnMouseUp boolean If set, the menu will not hide it's layers when the mouse botton is
clicked. Usefull if your menuitems loads the pages in another
frame

layer_menu_id string If you want to specifically name a menu on a page. Probably you
don't need that!

Warning: Don't use underscore and special characters in this
string. Stick to alpha-numeric.

[random 6 char
hashstring]

TSref - 123

Property: Data type: Description: Default:
relativeToTriggerItem boolean This allows you to position the menu layers relative to the item

that triggers it. However you should be aware of the following
facts:
• This does not work with Netscape 4 - the position of the

trigger layer will be calculated to zero and thus the offset for
all menu layers will be 0,0 + your values.

• This feature will wrap the menu item in some <div>-tags right
before the whole item is wrapped by the .wrap code (for
GMENU_LAYERS) or .allWrap (for TMENU_LAYERS). The
bottom line of this is: 1) If your menu is horizontal, always
wrap your menu items in a table so linebreaks does not
appear because of the <div>-tags and 2) make sure the
wrapping of the table cell is done with the .wrap/.allWrap
properties respectively.

• Works only effectively on the first xMENU_LAYER in a
cascade. For succeeding xMENU_LAYERS items please use
“relativeToParentLayer”.

If set, properties xPosOffset, yPosOffset and lockPosition* are not
functional (properties directionLeft, directionUp, topOffset and
leftOffset are still active)

Additional Properties:
.addWidth = Adds the width of the trigger element
.addHeight = Adds the height of the trigger element

relativeToParentLayer boolean If set, then the layer will be positioned relative to the previous
layer (parent) in a cascaded series of xMENU_LAYERS. Basically
the relative position of the parent layer is just added to the offset
of the current menu.

Warning: This property makes sense only if there really is a
previous GMENU_LAYER to get position from! So you must have
a cascaded menu!

Additional Properties:
.addWidth = Adds the width of the parent layer
.addHeight = Adds the height of the parent layer

[tsref:(cObject).HMENU.(mObj).GMENU_LAYERS, (cObject).HMENU.(mObj).TMENU_LAYERS]

Example:

page.includeLibs.gmenu_layers = media/scripts/gmenu_layers.php
page.10 = HMENU
page.10.1 = GMENU_LAYERS
page.10.1 {
 layerStyle = position:absolute;VISIBILITY:hidden;
 xPosOffset = -30
 lockPosition = x
 expAll=1
 leftOffset = 15
 topOffset = 30
}
page.10.1.NO {
 backColor = #cccccc
 XY = [10.w]+10, 14
 10 = TEXT
 10.text.field = title
 10.offset = 5,10
}
page.10.2 = GMENU
page.10.2.wrap = <nobr>|</nobr>
page.10.2.NO {
 backColor = #99cccc
 XY = [10.w]+10, 14
 10 = TEXT
 10.text.field = title
 10.offset = 5,10
}

(Please refer to the “testsite” application which has a large section with test-examples for a LOT of
applications/configurations of the xMENU_LAYERS!)

GMENU_FOLDOUT:
GMENU_FOLDOUT works as an extension to GMENU, which means the these properties underneath is additional properties
to the ones above.

TSref - 124

The purpose of GMENU_FOLDOUT is to create 2-level menus which are folded out dynamically.

It works with both Netscape, Mozilla, Microsoft internet Explorer and Opera. The menu on the first level is a GMENU because
GMENU_FOLDOUT is responsible for this, but the submenu on the next level (refered to as 2nd level) can be both TMENU
and another GMENU.

NOTE: You must include the library "media/scripts/gmenu_foldout.php".

The script implemented is taken from http://www9.ewebcity.com/skripts/foldoutmenu_move.htm

Compatibilty: MSIE 4+, Netscape 4+ and 6+, Opera 5+

Property: Data type: Description: Default:
dontLinkIfSubmenu boolean If set, items that has a submenu is not linked. Items without a submenu

are always linked in the regular ways.

foldTimer int The timeout in the animation, these are milliseconds. 40

foldSpeed int, range 1-100 How many steps in an animation? Choose 1 for no animation. 1

stayFolded boolean Stay open when you click a new toplink? (Level 1)

TSref - 125

Property: Data type: Description: Default:
bottomHeight int, pixels Sets the height of the bottom layer. Is important if the bottomlayer

contains either content or a background color: Else the layer will be
clipped.

100

menuWidth int, pixels Width of the whole menu main layer. Important to set, especially for the
bottomlayer as it is clipped by this value. Always try to set this to the width
in pixels of the menu

170

menuHeight int Height of the whole menulayer. Seems to be not so important. 400

subMenuOffset x,y Offset of the submenu for each menuitem. This is important because if
you don't set this value the items will appear ontop of their “parent”

menuOffset x,y Offset of the menu main layer on the page. From upperleft corner

menuBackColor HTML-color Background color behind menu. If not set, transparent (which will not work
very well in case .foldSpeed is set to something else than 1. But see for
yourself)

dontWrapInTable boolean By default every menuitem on the first level is wrapped in a table:
<TABLE cellSpacing=0 cellPadding=0 width="100%"
border=0><TR><TD>
[menu item HTML here..]
</TD></TR></TABLE>
Doing this ensures that the layers renders equally in the supported
browsers. However you might need to disable that which is what you can
do by setting this flag.
Note: Using <TBODY> in this tables seems to break Netscape 4+

0

bottomContent cObject Content for the bottom layer that covers the end of the menu.

adjustItemsH int Adjusts the height calculation of the menulayers of the first level (called
Top)

Example:
-10

This value will substract 10 pixels from the height of the layer in
calculations.

adjustSubItemsH int Adjusts the height calculation of the menulayers of the second level
(subitems, called Sub)
See above

arrowNO
arrowACT

imgResource If both arrowNO and arrowACT is defined and valid imgResources then
these images are use as “traditional arrows” that indicates whether an
item is expanded (active) or not.
NO is normal, ACT is expanded
The image is inserted just before the menuitem. If you want to change the
position, put the marker ###ARROW_IMAGE### into the wrap of the item
and the image will be put there instead.

arrowImgParams params Parameters to the arrow-image.

Example:
hspace=5 vspace=7

displayActiveOnLoad boolean If set, then the active menu items will fold out “onLoad”
[tsref:(cObject).HMENU.(mObj).GMENU_FOLDOUT]

Example:

GMENU_FOLDOUT
includeLibs.gmenu_foldout = media/scripts/gmenu_foldout.php
temp.foldoutMenu = HMENU
temp.foldoutMenu.1 = GMENU_FOLDOUT
temp.foldoutMenu.1.expAll=1
temp.foldoutMenu.1.NO {
 wrap = |

 XY = 150,20
 backColor = silver
 10 = TEXT
 10.text.field = title
 10.fontSize = 12
 10.fontColor = Blue
 10.offset = 2,10
}
temp.foldoutMenu.1.RO < temp.foldoutMenu.1.NO
temp.foldoutMenu.1.RO = 1
temp.foldoutMenu.1.RO {
 10.fontColor = red

TSref - 126

}
temp.foldoutMenu.2 = TMENU
temp.foldoutMenu.2.NO {
 linkWrap = <nobr>|</nobr>

 stdWrap.case = upper
}
temp.foldoutMenu.1 {
 dontLinkIfSubmenu = 1
 stayFolded=1
 foldSpeed = 6
 subMenuOffset = 10,18
 menuOffset = 100,20
 menuBackColor = silver
 bottomBackColor = silver
 menuWidth = 170

 arrowNO = media/bullets/arrow_no.gif
 arrowACT = media/bullets/arrow_act.gif
 arrowImgParams = hspace=4 align=top
 bottomContent = TEXT
 bottomContent.value = Hello World! Here is some content!
}

This creates a menu like this (above). One important point is the line
temp.foldoutMenu.1.expAll=1

If you don't set this (just like the GMENU_LAYERS) then the second level is not generated!

TMENU:
Property: Data type: Description: Default:

expAll boolean If this is true, the menu will always show the menu on the level
underneath the menuitem. This corresponds to a situation where a user
has clicked a menuitem and the menu folds out the next level. This can
enable that to happen on all items as default.

collapse boolean If set, "active" menuitems that has expanded the next level on the menu
will now collapse that menu again.

accessKey boolean If set access-keys are set on the menu-links

noBlur boolean Normally links are "blurred" if the browser is MSIE. Blurring removes the
ugly box around a clicked link.
If this property is set, the link is NOT blurred (browser-default) with
"onFocus".

target target Target of the menulinks self

forceTypeValue int If set, the &type parameter of the link is forced to this value regardless of
target.

TSref - 127

Property: Data type: Description: Default:
stdWrap ->stdWrap Wraps the whole item using stdWrap

Example: see GMENU.stdWrap

wrap wrap Wraps only if there were items in the menu!

IProcFunc function-name The internal array “I” is passed to this function and expected returned as
well. Subsequent to this function call the menu item is compiled by
implode()'ing the array $I[parts] in the passed array. Thus you may modify
this if you need to.
See example on the testsite and in
media/scripts/example_itemArrayProcFunc.php

[Common Item
States, see above]

->TMENUITEM This is the TMENUITEM-options for each category of menuitem that can
be generated.

SPECIAL:
The ->OptionSplit function is run on the whole GIFBUILDER-configuration
before the items are generated.

[tsref:(cObject).HMENU.(mObj).TMENU]

TMENUITEM:
The current record is the page-record of the menu item - just like you have it with GMENU/gifbuilder. Now, if you would like to
get data from the current page record, use stdWrap.data = page : [fieldname]

Property: Data type: Description: Default:
allWrap wrap /stdWrap Wraps the whole item

wrapItemAndSub wrap Wraps the whole item and any submenu concatenated to it.

subst_elementUid boolean If set, all appearances of the string '{elementUid}' in the total element
html-code (after wrapped in .allWrap} is substituted with the uid number of
the menu item.
This is useful if you want to insert an identification code in the HTML in
order to manipulate properties with JavaScript.

RO_chBgColor string If property RO is set (see below) then you can set this property to a
certain set of parameters which will allow you to change the background
color of eg. the tablecell when the mouse rolls over you text-link.

Syntax:
[over-color] | [out-color] | [id-prefix]

Example:
page = PAGE
page.typeNum = 0
page.10 = HMENU
page.10.wrap = <table border=1>|</table>
page.10.1 = TMENU
page.10.1.NO {
 allWrap = <tr><td valign=top id="1tmenu{elementUid}"
style="background:#eeeeee;">|</td></tr>
 subst_elementUid = 1
 RO_chBgColor = #cccccc | #eeeeee | 1tmenu
 RO = 1
}

This example will start out with the table cells in #eeeeee and change
them to #cccccc (and back) when rolled over. The “1tmenu” string is a
unique id for the menu items. You may not need it (unless the same
menu items are more than once on a page), but the important thing is that
the id of the table cell has the exact same label before the {elementUid}
(red marks). The other important thing is that you DO set a default
background color for the cell with the style-attribute (blue marking). If you
do not, Mozilla browsers will behave a little strange by not capturing the
mouseout event the first time it's triggered.

before HTML /stdWrap

beforeImg imgResource

beforeImgTagParams -params

beforeImgLink boolean If set, this image is linked with the same <A> tag as the text

beforeROImg imgResource If set, ".beforeImg" and ".beforeROImg" is expected to create a rollOver-
pair.

beforeWrap wrap wrap around the ".before"-code

linkWrap wrap

stdWrap ->stdWrap stdWrap to the link-text!

TSref - 128

Property: Data type: Description: Default:
ATagBeforeWrap boolean

ATagParams <A>-params /
stdWrap

Additional parameters

Example:
class=”board”

ATagTitle string /stdWrap Allows you to specify the "title" attribute of the <a> tag around the menu
item.

Example:
ATagTitle.field = abstract // description

This would use the abstract or description field for the
attribute.

additionalParams string /stdWrap Define parameters that are added to the end of the URL. This must be
code ready to insert after the last parameter.

For details, see typolink->additionalParams

doNotLinkIt boolean if set, the linktext are not linked at all!

doNotShowLink boolean if set, the text will not be shown at all (smart with spacers)

stdWrap2 wrap /stdWrap stdWrap to the total link-text and ATag. (Notice that the plain default
value passed to stdWrap function is “|“.)

 |

RO boolean if set, rollOver is enabled for this link

after... [mixed] The series of “before...” properties are duplicated to “after...” properties as
well. The only difference is that the output generated by the .after....
properties are placed after the link and not before.

altTarget target Alternative target overriding the target property of the TMENU if set.

allStdWrap ->stdWrap stdWrap of the whole item
[tsref:(cObject).HMENU.(mObj).TMENUITEM]

IMGMENU:
Background:

Imagemaps are made by creating one large GIFBUILDER-object based on the GIFBUILDER-object ".main" and adding the
properties of the GIFBUILDER-objects for each item (NO, ACT, SPC... and so on).

Property: Data type: Description: Default:
target target Target of the menulinks self

forceTypeValue int If set, the &type parameter of the link is forced to this value regardless of
target.

noBlur Boolean Normally graphical links are "blurred" if the browser is MSIE. Blurring
removes the ugly box around a clicked link.
If this property is set, the link is NOT blurred (browser-default) with
"onFocus".

wrap wrap

params -params

main ->GIFBUILDER Main configuration of the image-map! This defines the "underlay"!

dWorkArea offset + calc Main offset of the GIFBUILDER-items (also called the "distribution")

TSref - 129

Property: Data type: Description: Default:
[Common Item
States, see above]

->IMGMENUITEM
+ .distrib

This is the TMENUITEM-options for each category of menuitem that can
be generated.

SPECIAL:
The ->OptionSplit function is run on the whole GIFBUILDER-
configuration before the items are generated.

.distrib is (x,y,v,h +calc) of the distribution of the menuitems. This
provides a way to space each item from the other. The codes "textX" and
"textY" can be used for the width (X) and height (Y) dimension of each
link.
This works by adding a WORKAREA-GifBuilderObj between each of the
IMGMENUITEM ("subset" of a GIFBUILDER-object) and this workarea
defines where the text should be printed. As such the "x,y" defines the
offset the next item will have (this should be the width of the previous in
many cases!) and "v,h" defines the dimensions of the current item.
Consider this example taken from the static_template "template: MM":
 NO.distrib = textX+10, 0, textX+10, textY+5
In the future TypoScript may provide better ways to position
GIFBUILDER-objects on the image-maps!

ImgMap is automatically used on the links! (that is the ".imgMap"
property of the text-objects in the GIFBUILDER-objects is set
automatically, unless is allready set.)

imgMapExtras <area...>-tags Extra <area...>tags for the image-map

debugRenumberedO
bject

boolean if set, the final GIFBUILDER object configuration is output in order for you
to debug your configuration

[tsref:(cObject).HMENU.(mObj).IMGMENU]

IMGMENUITEM:
Property: Data type: Description: Default:

1,2,3,4... ->GifBuilderObj NOTE:
The way a imagemap is made is this; All IMGMENUITEMS are included
in one big Gifbuilderobj (and renumbered!!). Because of this,
Gifbuilderobjects on the next level will not be able to access the data of
each menuitem.
Also the feature of using [##.w] and [##.h] with +calc is currently not
supported by IMGMENUITEMs.
Therefore all IMAGE-objects on the first level is checked; if "file" or
"mask" for any IMAGE-objects are set to "GIFBUILDER", the Gifbuilder-
object is parsed to see if any TEXT-objects are present and if so, the
TEXT-object is "checked" - which means, that the stdWrap-function is
called at a time where the $cObj->data-array is set to the actual
menuitem.
In the example below, the text of each menuitem is rendered by letting the
title be rendered on a mask instead of directly on the image. Please
observe that the "NO.10"-object is present in order for the image-map
coordinates to be generated!!

 NO.6 = IMAGE
 NO.6.file = masked_pencolor*.gif
 NO.6.mask = GIFBUILDER
 NO.6.mask {
 XY = 500, 200
 backColor = black
 10 = TEXT
 10 {
 text.field = title
 fontFile = fileadmin/fonts/caflisch.ttf
 fontSize = 34
 fontColor = white
 angle = 15
 offset = 48,110
 }
 20 = EFFECT
 20.value = blur=80
 }
 NO.10 = TEXT
 NO.10 {
 text.field = title
 fontFile = fileadmin/fonts/caflisch.ttf
 fontSize = 34
 angle = 15
 offset = 48,110
 hideButCreateMap = 1
 }

[tsref:(cObject).HMENU.(mObj).IMGMENUITEM]

TSref - 130

JSMENU:
Property: Data type: Description: Default:

levels int, 1-5 How many levels there are 1

menuName string JavaScript menu name.
If you have more than one JSMENU on the page, you should set this
value for each one.

target target Decides target of the menu-links

forceTypeValue int If set, the &type parameter of the link is forced to this value regardless of
target.

1,2,3,4... JSMENUITEM levels-config

wrap wrap wrap around the selector-boxes

wrapAfterTags wrap wrap around the selector-boxes with wrap and form-tags og JS-code.

firstLabelGeneral string General firstlabel. May be overridden by the one set in each
JSMENUITEM

SPC boolean If set, spacer can go into the menu, else not.
[tsref:(cObject).HMENU.(mObj).JSMENU]

JSMENUITEM:
Property: Data type: Description: Default:

noLink boolean Normally the selection of a menu item in the selector box will update the
selector on the next level (if there is a next level) and if there are no items
for that selector (because there were no subpages), then the link jumps to
the page of itself.
If this flag is set, however, no menuitems in the selector box will ever link
to anything. Only update the content of the next selector box on next level.

alwaysLink boolean If set an item in the menu selector will always link. This takes precedence
over "noLink".

showFi rst boolean if set, the first link will be shown when the menu is updated.

showActive boolean if set, the active level will be selected, if present

wrap wrap wraps the selectorbox

width int+ Initial width of the boxes set by a number of _ (underscores) 14

elements int+ Initial number of elements in the menu. This is of course overruled by the
actual menu item texts.

5

additionalParams string Additional parameters to the <select> box. Eg, you could set the width
with a style-parameter like this:
style="width: 200px;"

firstLabel string Firt label in top of the menu (default is blank)
[tsref:(cObject).HMENU.(mObj).JSMENUITEM]

Example:
The menu:
temp.jsmenu = HMENU
temp.jsmenu.1 = JSMENU
temp.jsmenu.1 {
 levels = 2
 1.wrap = |

 2.wrap = |<HR>
}
Insert on page.
page = PAGE
page.typeNum =0
page.5 = TEXT
page.5.field = title
page.10 < temp.jsmenu

This draws a menu with two selector boxes

TSref - 131

media/scripts/ Plugins
media/scripts/ in general
This directory primarily contains php-scripts which are meant as 'external modules' as opposed to features included in the
typo3/sysext/cms/tslib/ libraries. Although they are distributed with TYPO3 just like tslib/ they form a basis for externally
developed front-end functionality. So for most of these scripts, be inspired by them to write your own code. Notice the word
'most'; because some are written long time ago and does not represent the state-of-the-day to do it.

About 'example templates'
For each plugin script there is one or more example templates. These templates are a part of the documentation of the
features in the plugin because they describe the features of the markers and subparts and present an example to learn from.
Therefore the example templates may be change when new features come along or of other reasons.

You should therfore not rely on using the default templates unless you'll except the fact that they may change in the future!
So make a copy, modify it for your own purpose if need and set up the TypoScript of the plugin to use your own template file!

TSref - 132

fe_adminLib.inc

Files:
File: Description:

fe_adminLib.inc Main class used to display the fe administration forms
Call it from a USER_INT cObject with 'userFunc = user_feAdmin->init'. See the static_templates for
examples.
Note: Using the USER_INT cObject allows the script to work regardless of the page-cache which is
necessary!!

fe_admin_dmailsubscrip.tmpl Example template file for subscription to newsletters of users to the tt_address table. This template is
used by the static_template 'plugin.feadmin.dmailsubscription'

fe_admin_fe_users.tmpl Example template file for creating new front end users (fe_users). This template is used by the
static_template 'plugin.feadmin.fe_users'

Description
This class is used to create forms for database-administration in the front-end independently of the backend (TBE). Thus you
may want to use this, if you would like front-end users to edit database content.

Authentication goes through either fe_user login in which case you can stamp the records with the fe_user_uid so a record
belongs to a certain fe_user. The other authentication option is email authentication. In this case you have access to the
record if your email is found in a certain field. By fe_user authentication you can get a menu of items to edit when you're
logged in. With email-authentication, you can request an email to be sent to your email address. This email contains a list of
the available records.

It's all based on HTML-template files which you have to design by your self, so there's some design work to do. On the other
hand you get total freedom to design your forms.

Example:
See static_templates 'plugin.feadmin.*' for various examples. Test them configured on the TYPO3 testsite.

Static template
plugin.feadmin.*

Incoming GET or POST vars:
Name: Description:

cmd Command;

preview Preview flag.

backURL Back URL.

rU Record UID.

aC Authentication Code.

fD fixed Data (array of fields)

FE Frontend Edit data array, syntax, FE[tablename][fieldname] = value

fe_adminLib.inc properties
Property: Data type: Description: Default:

templateFile resource The template file, see examples in media/scripts/fe_user_admin.tmpl

templateContent string Alternatively you can set this property directly to the value of the
template.

table tablename The table to edit.
Notice: The ultimate lsit of fields allowed to be edited for the table is
defined in TCA with the key ["feInterface"]["fe_admin_fieldList"] for
each table in question. For an example, see the table definition for
fe_users which is a good example.

defaultCmd string Defines which action should be default (if &cmd= is not set when
calling the page)

clearCacheOfPages [list of integers] This is a list of page-ids for which to clear the cache on any
successfull operation be it EDIT, CREATE og DELETE.

debug boolean If set, debug information will be output from fe_adminLib which helps
to track errors.

Actions:

TSref - 133

Property: Data type: Description: Default:
edit boolean /

actionObject
If set, editing is basically allowed.
But you need to specify:

.fields (list of fieldnames) which determines the fields allowed for
editing. Every field in this list must be found as well in the
["feInterface"]["fe_admin_fieldList"] found in the TCA array which
ultimately determines which fields can be edited by the fe_adminLib.

.overrideValues.[fieldname] (value string) defines values for specific
fields which will override ANY input from the form. Overriding values
happens after the outside values has been parsed by the .
parseValues-property of fe_adminLib but before the evaluation by .
required and .evalValues below. For example this may be useful if you
wish to hide a record which is being edited, because you want to
preview it first.

.required (list of fieldnames, subset of .fields) which determines which
fields are required to return a true value. The valid fields entered here
will have the subpart ###SUB_REQUIRED_FIELD_[fieldname]###
removed from the templates if they evaluates to being true and
thereby OK. See below for information about this subpart.

.evalValues.[fieldname] (list of eval-codes) defines specific
evaluation forms for the individual fiels of the form. See below.

.preview (boolean) will enable the form submitted to be previewed
first. This requires a template for preview to be found in the template
file. See below for subpart marker names.

.menuLockPid (boolean will force the menu of editable items to be
locked to the .pid (edit only)

.userFunc_afterSave (function-name) is called after the record is
saved. The content passed is an array with the current (and previous)
record in.

create boolean /
actionObject

The same as .edit above except where otherwise stated.
Plus there is these additional properties:

.noSpecialLoginForm (boolean) - if set, fe_adminLib does NOT look
for the subpart marker TEMPLATE_CREATE_LOGIN but always for
TEMPLATE_CREATE

.defaultValues.[fieldname] (value string); Like .overrideValues but
this sets the default values the first time the form is displayed.

delete boolean Whether or not records may be deleted. Still regular authentication
(ownership or email authCode) is required. Setting the var “preview”
lets you make a delete-preview before actually deleting the record.

infomail boolean Infomails are plaintext mails based on templates found in the template
file. They may be used for such as sending a forgotten password to a
user, but what goes into the infomail is totally up to your design of the
template.
Normally you may have only a default infomail (infomail.default) for
instance for sending the password. But you can use other keys also.
See below.

infomail.[key] (configuration of
infomail
properties)

In order to make fe_adminLib send an infomail, you must specify
these vars in your GET vars or HTML-form.

fetch - if integer, it searches for the uid being the value of 'fetch'. If
not, it searches for the email-field (defined by a property of
fe_adminLib, see below).

key - points to the infomail.[key] configuration to use

Properties:
.dontLockPid (boolean) - selects only records from the .pid of
fe_adminLib.
.label (string) - The suffix for the markers, see 'Email Markers'
beneath.

TSref - 134

Property: Data type: Description: Default:
setfixed boolean /

properties
Allows set-fixed input, probably coming from a link in an infomail or
notification mail.
Syntax:

.[fixkey].[fieldname] = fieldvalue - is used to setup a setfixed-link
insertable in the infomail by the SYS_SETFIXED_*-markers. See
above (setfixed-property of fe_adminLib).
Special fixkey 'DELETE' is just a boolean.

.userFunc_afterSave (function-name) is called after the record is
saved. The content passed is an array with the current (and previous)
record in.

Concept:
The 'setfixed' concept is best explained by describing a typical
scenario - in fact the most common situation of its use:
Imagine you have some users submitting information on your website.
But before that information enters the database, you would like to
moderate it - simply preview it and then either delete it or approve it. In
the 'create' configuration of fe_adminLib, you set up the hidden field of
the record to be overridden to 1. Thus the record is hidden by default.
Then you configure a setfixed-fixkey to set the hidden field to 0. This
set up generates a list of parameters for use in an URL and those
parameters are finally inserted by a corresponding marker in the email
template. The link includes all necessary authentication to perform the
change of values and thus a single click on that link is enough to
change the field values. So this will - by a single click of a link in a
notification mail sent to an admin - enable the record! Or of course a
similar link with a cmd=delete link will delete it...
There is a special “fieldname” you can use, which is '_FIELDLIST” and
that lets you specify a list of fields in the record to base the auth-code
on. If nothing is specifyed the md5-hash is based on the whole record
which means that any changes will disable the setfixed link. If on the
other hand, you set _FIELDLIST = uid,pid then that record will be
editable as long as the uid and pid values are intact.
Example:
This is a common configuration of the email-properties with a simple
setfixed setting:
 email.from = kasper@typo3.com
 email.fromName = Kasper Skårhøj
 email.admin = kasper@typo3.com
 setfixed.approve {
 hidden = 0
 _FIELDLIST = uid,pid
 }
 setfixed.DELETE = 1
 setfixed.DELETE._FIELDLIST = uid

Now, if you insert this marker in your email template

 ###SYS_SETFIXED_approve###

if will get substituted with something like these parameters:

&cmd=setfixed&rU=9&fD[hidden]=0&aC=5c403d90

Now, all you need is to point that to the correct url (where fe_adminLib
is invoked!), eg:

###THIS_URL######FORM_URL######SYS_SETFIXED_approve#
##

and for deletion:

...###SYS_SETFIXED_DELETE###
Others

TSref - 135

Property: Data type: Description: Default:
authcodeFields [list of fields] Comma separated list of fields to base the authCode generation on.

Basically this list would include “uid” only in most cases. If the list
includes more fields, you should be aware that the authCode will
change when the value of that field changes. And then the user will
have to re-send an email to himself with a new code.

.addKey (string) adds the string to the md5-hash of the authCode.
Just enter any random string here. Point is that people from outside
doesn't know this code and therefore are not able to reconstruct the
md5-hash solely based on the uid

.addDate (date-config) You can use this to make the code time-
disabled. Say if you enter “d-m-Y” here as value, the code will work
until midnight and then a new code will be valid.

.codeLength (int) Defines how long the authentication code should
be. Default is 8 characters.
In any case TYPO3_CONF_VARS[SYS][encryptionKey] is prepended.

Advice:
If you want to generate authCodes compatible with the standard
authCodes (used by the direct mailer by t3lib_div::stdAuthCode()),
please set TYPO3_CONF_VARS[SYS][encryptionKey] to a unique
and secret key (like you should in any case) and add “uid” as
authcodeField ONLY. This is secure enough.

email .from (string, email) Defines the sender email address of mails sent
out

.fromName (string) Defines the name of the sender. If set, this will be
used on the form NAME <EMAIL>

.admin Email address of the administrator which is notified of
changes.

.field (string/integer) Defines the fieldname of the record where the
email address to send to is found. If the field content happens to be an
integer, this is assumed to be the uid of the fe_user owning the record
and the email address of that user is fetched for the purpose instead.

pid int+ The pid in which to store/get the records. Current page

fe_userOwnSelf boolean If set, fe_users created by this module has their fe_cruser_id-field set
to their own uid which means they 'own' their own record and can thus
edit their own data.
All other tables which has a fe_cruser_id field configured in the 'ctrl'
section of their $TCA-configuration will automatically get this field set
to the current fe_user id.

fe_userEditSelf boolean If set, fe_users - regardless of whether they own themselves or not -
will be allowed to edit himself.

allowedGroups [list of integers] List of fe_groups uid numbers which are allowed to edit the records
through this form. Normally only the owner fe_user is allowed to do
that.

evalFunc function-name Function by which you can manipulate the dataArray before it's saved.
The dataArray is passed to the function as $content and MUST be
returned again from the function.
The property “parentObj” is a hardcoded reference to the fe_adminLib
object.

formurl ->typolink Contains typolink properties for the URL (action tag) of the form.

TSref - 136

Property: Data type: Description: Default:
parseValues.[field] [list of

parseCodes]
ParseCodes:
int - returns the integer value of the input
lower - returns lowercase version of the input
upper - returns uppercase version of the input
nospace - strips all space
alpha, num, alphanum, alphanum_x - only alphabetic (a-z) and/or
numeric chars. alphanum_x also allows _ and -
trim - trims whitespace in the ends of the string
setEmptyIfAbsent - will make sure the field is set to empty if the
value is not submitted. This ensures a field to be updated an is handy
with checkboxes
random[x] - Returns a random number between 0 and x
files[semicolon-list(!) of extensions, none=all][maxsize in kb,
none=no limit] - Defining the field to hold files. See below for details!
multiple - Set this, if the input comes from a multiple-selector box
(remember to add ...[] to the fieldname so the values come in an
array!)
checkArray - Set this, if you want several checkboxes to set bits in a
single field. In that case you must prepend every checkbox with [x]
where x is the bitnumber to set starting with zero. The default values
of the checkbox form elements must be false.
uniqueHashInt[semicolon-list(!) of other fields] - This makes a
unique hash (32 bit integer) of the content in the specified fields. The
values of those fields are first converted to lowercase and only
alphanum chars are preserved.

userFunc_updateArray function-name Points to a user function which will have the value-array passed to it
before the value array is used to construct the update-JavaScript
statements.

evalErrors.[field].[evalCode] This lets you specify the error messages inserted in the
###EVAL_ERROR_FIELD_[fieldname]### markers upon an
evaluation error.
See description of evaluation below.

cObjects.[marker_name] cObject This is cObjects you can insert by markers in the template.

Example:
Say, you set up a cObject like this:

cObject.myHeader = TEXT
cObject.myHeader.value = This is my header

then you can include this cObject in most of the templates through a
marker named ###CE_myHeader### or ###PCE_myHeader### (see
below for details on the difference).

wrap1 ->stdWrap Global Wrap 1. This will be splitted into the markers ###GW1B###
and ###GW1E###. Don't change the input value by the settings, only
wrap it in something.

Example:
wrap1.wrap = |

wrap2 ->stdWrap Global Wrap 2 (see above)

color1 string /stdWrap Value for ###GC1### marker (Global color 1)

color2 string /stdWrap Value for ###GC2### marker (Global color 2)

color3 string /stdWrap Value for ###GC3### marker (Global color 3)
[tsref:(script).fe_adminLib]

Main subparts
There are a certain system in the naming of the main subparts of the template file. These markers below is used when an
action results in “saving”. The [action] code may be DELETE, EDIT or CREATE depending on the cmd value.

Subpart marker: Description:
###TEMPLATE_[action]_SAVED### Used for HTML output

###TEMPLATE_SETFIXED_OK### (general)
###TEMPLATE_SETFIXED_OK_[fixkey]###

Used for a successfull setfixed-link.

###TEMPLATE_SETFIXED_FAILED### Used for an unsuccessfull setfixed-link. Notice that if you click a setfixed
link twice, the second time it will fail. This is because the setfixed link is
bound to the original record and if that changes in any way the
authentication code will be invalid!

###EMAIL_TEMPLATE_[action]_SAVED### Used for an email message sent to the website user

TSref - 137

Subpart marker: Description:
###EMAIL_TEMPLATE_[action]_SAVED-ADMIN### Used for an email message sent to the admin

###EMAIL_TEMPLATE_SETFIXED_[fixkey]### Used for notification messages in the event of successfull setfixed
operations.

###EMAIL_TEMPLATE_SETFIXED_[fixkey]-ADMIN### Ditto, for admin email

Likewise there are a system in the subpart markers used for the EDIT and CREATE actions to display the initial forms:

###TEMPLATE_[action]### or if a fe_user is logged in (only CREATE): ###TEMPLATE_[action]_LOGIN###

... and if the &preview-flag is sent as well (including DELETE)

###TEMPLATE_[action]_PREVIEW###

Must-have subparts:

These are subparts that should exist in any template.

Subpart marker: Description:
###TEMPLATE_AUTH### Displayed if the authentication - either of fe_user or email authentication

code - failed. You must design the error display to correctly reflect the
problem!

###TEMPLATE_NO_PERMISSIONS### This error message is displayed if you were authenticated but of other
reasons (like wrong fe_user/group ownership) did not posses the right to
edit or delete a record.

'infomail' Email subparts
All email subparts can be sent as HTML. This is done if the first and last word of the templates is <html> and </html>
respectively. In addition the t3lib_htmlmail class must be loaded.

Subpart: Description:
###EMAIL_TEMPLATE_NORECORD###

###EMAIL_TEMPLATE_[infomail_key]###

###SUB_RECORD###

'infomail' Email markers
Marker: Description:

###SYS_AUTHCODE###

###SYS_SETFIXED_[fixkey]###

FORM conventions
The forms used with fe_adminLib should be named after the table their are supposed to edit. For instance if you are going to
edit records in the table 'fe_users' you must use a FORM-tag like this:

<FORM name=”fe_users_form” method=”POST” action=”....”>

The fields used to submit data for the records has this syntax, FE[tablename][fieldname]. This means, if you want to edit the
'city' field of a tt_address record, you could use a form element like this:

<INPUT name=”FE[tt_address][city]”>

Submit buttons can be named as you like except using the name “doNotSave” of a submit button will prevent saving. If you
need Cancel button, please resort to JavaScript in an onClick even to change document.location.

Common markers
###GW1B### / ###GW1E###: Global wrap 1, begin and end (headers)
###GW2B### / ###GW2E###: Global wrap 2, begin and end (bodytext)
###GC1### / ###GC2### / ###GC3###: Global color 1 through 3

###FORM_URL###: The url used in the forms: index.php?id=page-id&type=page-type
###FORM_URL_ENC###: As above, but rawurlencoded.

TSref - 138

###BACK_URL###: The backUrl value. Set to the value of incoming “backURL” var
###BACK_URL_ENC###: As above, but rawurlencoded.
###REC_UID###: The UID of the record edited. Set to the value of incoming “rU” var
###AUTH_CODE###: The “aC” incoming var
###THE_PID###: The “thePid” value - where the records are stored.
###THIS_ID###: Set to the current page id
###THIS_URL###: Set to the current script url as obtained by t3lib_div::getThisUrl()
###HIDDENFIELDS###: A bunch of hiddenfields which are required to be inserted in the forms. These
includes by default 'cmd', 'aC' and 'backURL'

In addition you can in most cases use markers like this

###FIELD_[fieldname]###

where [fieldname] is the name of a field from the record. All fields in the record are used.

Finally you can insert cObjects defined in TypoScript with this series of markers (see .cObject property in table above):

###CE_[cObjectName]###
###PCE_[cObjectName]###

(###PCE_* is difference from ###CE_* cObjects by the fact they are rendered with a newly created cObj (as opposed to the
parant cObj of fe_adminLib) where the data-array is loaded with the value of ->dataArr which is the array submitted into the
script. This makes then useful for presenting preview data. Finally both PCE_ and CE_ types cObject markers may be used
with each single element in a edit menu (list of available records) by prefixing the marker with 'ITEM_', eg. ###ITEM_PCE_
[cObjectName]###

Evaluation of the form fields
Printing error messages for REQUIRED fields

When a form template is displayed all subparts with the markers
###SUB_REQUIRED_FIELDS_WARNING###

and
###SUB_REQUIRED_FIELD_[fieldname]###

are removed. If there is a simple “required”-error (a field is not filled in) then the SUB_REQUIRED_FIELDS_WARNING is
not removed and thus the error message contained herein is shown.

Lets say that more specifically it's the 'email' field in a form which is not filled in. Then you can put in a subpart named
###SUB_REQUIRED_FIELD_email###

This is normally removed, but it'll not be removed if the email field fails and thus you are able to give a special warning for
that specific field.

Printing other error messages

However you may use other forms of evaluation than simple “required” check. This is specified for “create” and “edit” modes
by the properties “.evalValues.[fieldname] = [list of codes]”. In order to tell your website user which of the possible
evaluations went wrong, you can specify error messages by the property .evalErrors which will be inserted as the marker
named ###EVAL_ERROR_FIELD_[fieldname]###.

Lets say that you have put the code 'uniqueLocal' in the list of evaluation code for the email field. You would do that if you
want to make sure that no email address is put into the database twice. Then you may specify that as:
 create.evalValues {
 email = uniqueLocal, email
 }

Then you set the evaluation error messages like this:
 evalErrors.email {
 uniqueLocal = Apparently you're already registered with this email address!
 email = This is not a proper email address!
 }

If the error happens to be that the email address already exists the field ###EVAL_ERROR_FIELD_email### will be
substituted with the error message “Apparently you're already registered with this email address!”.

Passing default values to a form
You can pass default values to a form by the same syntax as you use in the forms. For instance this would set the name and

TSref - 139

email address by default:
...?FE[tt_address][name]=Mike%20Tyson&FE[tt_address][email]=mike@trex.us&doNotSave=1&noWarnings=1

Notice the blue value names are the field values (must be rawurlencoded. In javascript this function is called escape()) and
the red values are necessary if you want to NOT save the record by this action and NOT to display error messages if some
fields which are required is not passed any value.

List of eval-codes
Eval-code: Description:

uniqueGlobal This requires the value of the field to be globally unique, which means it must not exist in the same field of
any other record in the current table.

uniqueLocal This is like uniqueGlobal, but the value is required to be unique only in the PID of the record. Thus if two
records has different pid values, they may have the same value of this field.

twice This requires the value of the field to match the value of a secondary field name [fieldname]_again sent in
the incoming formdata. THis is useful for entering password. Then if your password field is name
“user_pass” then you simple add a second field name “user_pass_again” and then set the 'twice' eval code.

email Requires the field value to be an email address at least on the form [name]@*[domain].[tld]

required Just simple required (trimmed value). 0 (zero) will evaluate to false!

atLeast

atMost

Specifies a minimum / maximum of characters to enter in the fields.
Example, that requires at least 5 characters: atleast [5]

inBranch inBranch requires the value (typically of a pid-field) to be among a list of page-id's (pid's) specified with the
inBranch parameters. The parameters are given like [root_pid; depth; beginAt]
Example, which will return a list of pids one level deep from page 4 (included): inBranch [4;1]

unsetEmpty This evaluation does not result in any error code. Only it simply unsets the field if the value of the field is
empty. Thus it'll not override any current value if the field value is not set.

[tsref:(script).fe_adminLib.evalErrors.(field).(evalCode)]

Uploading files
fe_adminLib is able to receive files in the forms. However there currently are heavy restrictions on how that is handled.
Ideally the proces would be handled by the t3lib_tcemain class used in the backend. In fact this could have been deployed
but is not at this stage. The good thing about tcemain.php is that it perfectly handles the copying/deletion of files which goes
into a certain field and even handles it independent of the storing method be it a list of filenames or use MM-relations to
records (see tables.php section in 'Inside TYPO3').

This is how files are handled by fe_adminLib and the restrictions that apply currently:

• You can upload files ONLY using “create” mode of a record. In any case you cannot edit currently attached files (this may
be improved in the future). You can however use 'delete' mode.

• However you can use PREVIEW mode with 'create'. Works like this: if the mode is preview the temporary uploaded file is
copied to a unique filename (prepended with the tablename) in typo3temp/ folder. Then the field value is set to the
filenames in a list. When the user approves the content of the preview those temporary files are finally copied to the
uploads/* folder (or whereever specified in TCA). Limitations are that the temporary files in typo3temp/ are NOT deleted
when copied to the real upload-folder (this may be improved) and certainly not if the user aborts (can't be improved
because the user may go anywhere). If the user cancels the preview in order to change values, the files will need to be
uploaded again (this may be improved).

• The TCA extensions allowed for the field is ignored! However you can specify a list of extensions of allowed for the files in
the .parseValues property of fe_adminLib

• The TCA filesize limitation for the field is ignored! However you can specify a max file size in kb in the .parseValues
property of fe_adminLib

• Works only on fields configured for comma-list representation of the filenames (non-MM, see “Inside TYPO3” document
on MM relations for files).

It's recommended to use a dedicated folder for files administered by the fe_adminLib. The TYPO3 testsite does that by using
the uploads/photomarathon/ folder for images. This makes it much easier to clean up the mess if files and their relations to
the records are broken.

Fieldnames for files

Lets say you have a field named “picture” of a table name “user_cars”, the form-element should look like this:
<input type="file" name="FE[user_cars][picture][]">

TSref - 140

If you wish to upload multiple files to that field, the form-elements should look like:
<input type="file" name="FE[user_cars][picture][]">
<input type="file" name="FE[user_cars][picture][]">
<input type="file" name="FE[user_cars][picture][]">

Use blob-types for the file-fields and reserve a minimum of 32 characters pr. filename.

NOTE: Make sure to always add the last square brackets ('...[]') to the fieldname! Otherwise it will not work!

TSref - 141

tipafriendLib.inc

Files:
File: Description:

tipafriendLib.inc Main class used to display the Tip-a-Friend form
Call it from a USER cObject with 'userFunc = user_tipafriend->main_tipafriend'

tipafriend_template.tmpl Example template file.

Description

Example:
(See static_template 'plugin.tipafriend' for a working configuration)

Static template
plugin.tipafriend

tipafriendLib.inc properties
Property: Data type: Description: Default:

templateFile resource The template-file.
See example in 'media/scripts/tipafriend_template.tmpl'

code string /stdWrap Code to define, what the script does. Case sensitive.

defaultCode string The default code (see above) if the value is empty. By default it's not set
and a help screen will appear

wrap1 ->stdWrap Global Wrap 1. This will be splitted into the markers ###GW1B### and
###GW1E###. Don't change the input value by the settings, only wrap it in
something.

Example:
wrap1.wrap = |

wrap2 ->stdWrap Global Wrap 2 (see above)

color1 string /stdWrap Value for ###GC1### marker (Global color 1)

TSref - 142

Property: Data type: Description: Default:
color2 string /stdWrap Value for ###GC2### marker (Global color 2)

color3 string /stdWrap Value for ###GC3### marker (Global color 3)

typolink ->typolink TypoLink configuration for the TIPLINK to the TIPFORM page. .
additionalParams is added the parameter “&tipUrl=”

htmlmail boolean If set, the page is fetched as HTML and send in HTML (a plain text version
is sent as well).

[tsref:(script).tipafriend]

plaintextLib.inc

Files:
File: Description:

plaintextLib.inc Main class used to display plain text content
Call it from a USER cObject with 'userFunc = user_plaintext->main_plaintext'

plaintext_content.tmpl Example template file.

Description

Example:
(See static_template 'plugin.alt.plaintext' for a working configuration)

Static template
plugin.alt.plaintext

plaintextLib.inc properties
Property: Data type: Description: Default:

siteUrl url Url of the site.

defaultOutput untrimmed string Default output if CType is not rendered.

uploads.header untrimmed string Header for uploads

images.header untrimmed string Header for images

images.captionHeader untrimmed string Header for imagecaptions

images.linkPrefix untrimmed string Prefix for image-links

.header

defaultType int Which type to use as default

date date-config For header date

datePrefix untrimmed string Prefix for header date

linkPrefix untrimmed string Prefix for header links

[1-5].preLineLen int Lenght of line before header

[1-5].postLineLen int Lenght of line after header

[1-5].preBlanks int Number of blank lines before header

[1-5].postBlanks int Number of blank lines after header

[1-5].stdWrap ->stdWrap for header text

[1-5].preLineChar string Character to pre-line

[1-5].postLineChar string Character to post-line

[1-5].preLineBlanks int Number of blank lines between header and pre-line

[1-5].postLineBlanks int Number of blank lines between header and post-line

[1-5].autonumber boolean If set, a number is prepended every header. The number corresponds
to the content element number in the select.

[1-5].prefix untrimmed string Header string prefix

bulletlist.[0-3].bullet untrimmed string Bullet for bullet list, layout [0-3]

bulletlist.[0-3].
secondRow

untrimmed string If set, this is used for lines on the second row of bullet-lists.

TSref - 143

Property: Data type: Description: Default:
menu cObject cObject to render menu. The output is stripped for tags and the links is

extracted. Further all
 chars are converted to chr(10)

shortcut cObject cObject to render other elements. See config below which simply uses
this object to render more tt_content elements as plaintext.

bodytext.stdWrap ->stdWrap stdWrap for body-text. See config example below.

userProc function-name Lets you proces the output of each content element before it finally is
returned. Property “parentObj” of the conf-array holds a references to
the plainText object calling the function.

[tsref:(script).plaintextLib]

Datatype 'untrimmed string' means that you can enter a string as usual, but if you enter a value between two vertical lines,
that value will be used and NOT trimmed. Normally values are trimmed.

Example:
lib.renderObj = USER
lib.renderObj.userFunc = user_plaintext->main_plaintext
lib.renderObj {
 header.defaultType = 1
 header.date = D-m-Y
 header.datePrefix = |Date: |
 header.linkPrefix = | - Headerlink: |
 header.1.preLineLen = 76
 header.1.postLineLen = 76
 header.1.preBlanks=1
 header.1.stdWrap.case = upper

 header.2 < .header.1
 header.2.preLineChar=*
 header.2.postLineChar=*
 header.3.preBlanks=2
 header.3.postBlanks=1
 header.3.stdWrap.case = upper

 header.4 < .header.1
 header.4.preLineChar= =
 header.4.postLineChar= =
 header.4.preLineBlanks= 1
 header.4.postLineBlanks= 1
 header.5.preBlanks=1
 header.5.autonumber=1
 header.5.prefix = |: >> |

 siteUrl = {$plugin.alt.plaintext.siteUrl}
 defaultOutput (
|
[Unrendered Content Element; ###CType###]
|
)
 uploads.header = |DOWNLOADS:|
 images.header = |IMAGES:|
 images.linkPrefix = | - Imagelink: |
 images.captionHeader = |CAPTION:|
 bulletlist.0.bullet = |* |
 bulletlist.1.bullet = |# |
 bulletlist.2.bullet = | - |
 bulletlist.3.bullet = |> |
 bulletlist.3.secondRow = |. |
 bulletlist.3.blanks = 1
 menu = <tt_content.menu.20
 shortcut = <tt_content.shortcut.20
 shortcut.0.conf.tt_content = <lib.renderObj
 shortcut.0.tables = tt_content
 bodytext.stdWrap.parseFunc.tags {
 link < styles.content.parseFunc.tags.link
 typolist = USER
 typolist.userFunc = user_plaintext->typolist
 typolist.siteUrl = {$plugin.alt.plaintext.siteUrl}
 typolist.bulletlist < temp.renderObj.bulletlist
 typohead = USER

TSref - 144

 typohead.userFunc = user_plaintext->typohead
 typohead.siteUrl = {$plugin.alt.plaintext.siteUrl}
 typohead.header < temp.renderObj.header
 typocode = USER
 typocode.userFunc = user_plaintext->typocode
 typocode.siteUrl = {$plugin.alt.plaintext.siteUrl}
 }
}

TSref - 145

Standard Templates
static_template
This section of the TypoScript reference is used to introduce the standard templates that follows with TYPO3 in the static
table "static_template". You should not alter this table yourself but rather submit suggestions via the www.typo3.com-website
if you want to correct errors or add templates or other pieces of TypoScript.

The "static_template" is published in new versions. The old records in the static_template are NOT changed from version to
version (when finally released) unless they are under development and explicitly tagged with a note saying they are still not
fixed! Still changes may appear though as long as The TYPO3 project is not finally released!

Media
The standard templates uses some standard media-files, likes gif-images and fonts. These are situated in the folder "media/"
relative to the root of the TYPO3-website.

TSref - 146

PHP include scripts

Introduction
Although you can do very much with TypoScript itself, it can sometimes be a much more flexible solution to include a PHP-
script you write on your own. But you must understand and respect som circumstances. For example the caching system:
When a page is shown with TYPO3 it's normally cached afterwards in the SQL-database. This is done to ensure a high
performance when delivering the same page the next time. But this also means that you can only make custom code from
your include files if you differ your output based on the same conditions that the template may include! Fx. you cannot just
return browser-specific code to TypoScript if not the template also distinguish between the actual browsers. If you do, the
cache will cache the page with the browser-specific HTML-code and the next hit by another browser will trigger the cache to
return a wrong page. If the condition is correctly setup "another browser"-hit will instead render another page (which will also
be cached but tagged with the other browser!) an the two browsers will receive different pages but still the pages will be
cached.

Including your script
Your script is included by a function, PHP_SCRIPT, inside the class "tslib_cObj" in the "tslib_content.php" script. Thereby
your file is a part of this object (tslib_cObj) and function. This is why you must return all content in the variable "$content" and
any TypoScript-configuration is available from the array "$conf" (it may not be set at all though so check it with is_array()!)

$conf
The array $conf contains the configuration for the PHP_SCRIPT cObject. Try debug($conf) to see the content printed out for
debugging!

$content
Return all content in this variable.

Remember, don't output anything (but debug code) in your script!

Whitespace
Because nothing is sent off to the browser before everything is rendered and returned to index_ts.php which originally set of
the rendering process, you must ensure that there's no whitespace before and after your <?...?> tags in your include- or
library-scripts!

$GLOBALS["TSFE"]->set_no_cache()
Call the function $GLOBALS["TSFE"]->set_no_cache(), if you want to disable caching of the page. Call this during
development! And call it, if the content you create may not be cached.

NOTE: If you make a syntax error in your script that keeps PHP from executing it, then the $GLOBALS["TSFE"]-
>set_no_cache() function is not executed and the page is cached! So in such situations, correct the error, clear the page-
cache and try again. This is true only for PHP_SCRIPT and not PHP_SCRIPT_INT and PHP_SCRIPT_EXT which are
rendered after the cached page!

Example:
$GLOBALS["TSFE"]->set_no_cache();

$this->cObjGetSingle(value , properties)
Gets a content-object from the $conf-array. (See the casestory on how to use this!)

Example:
$content=$this->cObjGetSingle($conf["image"], $conf["image."]);

This would return any IMAGE-cObject at the property "image" of the conf-array for the include-script!!

$this->stdWrap(value, properties)
stdWrap's the content "value" due to the configuration of the array "properties".

Example:
$content = $this->stdWrap($content, $conf["stdWrap."]);

TSref - 147

This will stdWrap the content with the properties of ".stdWrap" of the $conf-array!

Internal Vars in the main frontend object, TSFE (TypoScript Front End)
There are some vars in the global object, TSFE, you might need to know about. These ARE ALL READ-ONLY!! (Read: Don't
change them!). See the class tslib_fe for the full descriptions.

You access them like this example with “id”: $GLOBALS["TSFE"]->id

Var: PHP-Type: Description: Default:
id int The page id

type int The type

page array The pagerecord

fe_user object The current front-end user.
Userrecord in $GLOBALS["TSFE"]->fe_user->user, if any login.

loginUser boolean Flag indicating that a front-end user is logged in. 0

rootLine array The rootLine (all the way to tree root, not only the current site!). Current
site root line is in $GLOBALS["TSFE"]->tmpl->rootLine

sys_page object The object with pagefunctions (object) See t3lib/page.php

gr_list string (list) The group list, sorted numerically. Group -1 = no login

beUserLogin boolean Flag that indicates if a Backend user is logged in! 0

Global vars
Var: PHP-Type: Description: Default:

BE_USER object The back-end user object (if any) not set

TYPO3_CONF_VAR
S

array TYPO3 Configuration

TSFE object main frontend object.

TSref - 148

Casestory:
This is a casestory of how to use include-scripts.

In this situation we would like to use some libraries of our very own, not part of TYPO3. Therefore we use the feature of
including a library at the very beginning of the page-parsing.

First we put this TypoScript line in the "Setup"-field of the template:

config.includeLibrary = fileadmin/scripts/include.inc

The file include.inc is now included (in typo3/sysext/cms/tslib/pagegen.php). In this case it looks like this:

file: fileadmin/scripts/include.inc
<?

...
include("fileadmin/scripts/hello_world.inc");
include("fileadmin/scripts/other_library.inc");
...

?>

As you can see, this file includes our library "hello_world" and some other libraries too!

The file hello_world.inc looks like this:

file: fileadmin/scripts/hello_world.inc
<?
class hello_world {

function theMessage () {
return "Hello World";

}
}
?>

So far nothing has happend, except our libraries are included, ready for use.

Now we need to use the outcome of the hello_world class somewhere on a page. So in the TypoScript code we setup a
content-object that includes the third script:

page.100 = PHP_SCRIPT
page.100.file = fileadmin/scripts/surprise.inc

surprise.inc looks like this:

file: fileadmin/scripts/surprise.inc

<?
$hello_world_object = new hello_world; // New instance is created
$contentBefore = $this->cObjGetSingle($conf["cObj"],$conf["cObj."]);
$content = $contentBefore.$hello_world_object->theMessage();
$content = $this->stdWrap($content,$conf["stdWrap."]);

?>

Line 1: The PHP-object $hello_world_object is created.

Line 2: This fetches the content of a cObject, "cObj", we defined

Line 3: The result of line 2 is concatenated with the result of the "theMessage"-function of the $hello_world_object object

Line 4: Finally the content is stdWrap'ed with the properties of ".stdWrap" of the $conf-array.

TSref - 149

The output:

With this configuration -
page.100 = PHP_SCRIPT
page.100.file = fileadmin/scripts/surprise.inc

- the output will look like this:

 Hello World

With this configuration -
page.100 = PHP_SCRIPT
page.100 {

file = fileadmin/scripts/surprise.inc
cObj = TEXT
cObj.value = Joe says:

}

- the output will look like this:

 Joe says: Hello World

 With this configuration -
page.100 = PHP_SCRIPT
page.100 {

file = fileadmin/scripts/surprise.inc
cObj = TEXT
cObj.value = Joe says:
stdWrap.wrap = |

 stdWrap.case = upper
}

- the output will look like this:

 JOE SAYS: HELLO WORLD

End of lesson.

Storing user-data or session-data
Doing so is quite simple with TYPO3.

Userdata is data, that follows login users. As soon as a login user is logged out, these data are no more accessible and
cannot be altered.

Session data is data, that follows the user currently browsing the site. This user may be a login-user, but his session-data is
bound to the "browsing-session" and not to the user-id of his. This means, that the very same person will carry this data still,
even if he logs out. As soon as he closes his browser, his data will be gone though.

Also you should know, that session-data has a default expire-time of 24 hours.

Retrieving and storing user-/session-data is done by these functions:

$GLOBALS["TSFE"]->fe_user->getKey(type, key)
"type" is either "user" or "ses", which defines the data-space, user-data or session-data

"key" is the "name" under which your data is stored. This may be arrays or normal scalars.

Note that the key "recs" is reserved for the built-in "shopping-basket". As is "sys" (for TYPO3 standard modules and code)

TSref - 150

Example:
if ($GLOBALS["TSFE"]->loginUser) {

$myData = $GLOBALS["TSFE"]->fe_user->getKey("user","myData");
} else {

$myData = $GLOBALS["TSFE"]->fe_user->getKey("ses","myData");
}

This gets the stored data with the key "myData" from the user-data, but if no user is logged in, it's fetched from the session
data instead.

$GLOBALS["TSFE"]->fe_user->setKey(type, key, data)
"type" is either "user" or "ses", which defines the data-space, user-data or session-data

"key" is the "name" under which your data is stored.

Note that the key "recs" is reserved for the built-in "shopping-basket". As is "sys" (for TYPO3 standard modules and code)

"data" is the variable, you want to store. This may be arrays or normal scalars.

Example:
$myConfig["name"] = "paul";
$myConfig["address"] = "Main street";
$GLOBALS["TSFE"]->fe_user->setKey("ses","myData", $myConfig);

This stores the array $myConfig under the key "myData" in the session-data. This lasts as long as "paul" is surfing the site!

Using the built in "shopping basket"
TYPO3 features a shopping basket for the session-data.

When you submit data from forms (or by querystring) (post/get-method) in the array "recs" it's stored in the session-data
under the key recs.

The syntax is like this:
recs[table_name][uid_of_record]

Example:
This form-element will change the registered value of record with uid=345 from the "tt_products" table in typo3. Please note,
that the record itself is NOT in any way modified, only the "counter" in the session-data indicating the "number of items" from
the table is modified.

<input name="recs[tt_products][345]">

NOTE on checkboxes:

When you are creating forms with checkboxes, the value of the checkbox is sent by MSIE/Netscape ONLY if the checkbox is
checked! If you want a value sent in case of a disabled checkbox, include a hidden formfield of the same name just before
the checkbox!

Example:

 <INPUT type="hidden" name="recs[tt_content][345]" value="0">
 <INPUT type="checkbox" name="recs[tt_content][345]" value="1">

Clearing the "basket":
This will clear the basket:
 <INPUT type="hidden" name="recs[clear_all]" value="1">

TSref - 151

index.php
Introduction
index.php is the main script for showing pages with TYPO3 / TypoScript. This page show some information about this script
and how to use it.

Normally you request pages by setting a value for "id" and possibly "type".

"id" refers to a page. This is an integer. If a string is supplied, it's regarded as an alias and the corresponding page is found.

"type" defines which "type" the page is. Always an integer (0-255). If "type" is not set it's regarded to be zero. "type" is used to
build framesets. Fx. the frameset would have "type=0" (or nothing) and the pages in the various frames would have "type=1"
and "type=2" and "type=3". In TypoScript you define a PAGE-object for each type so TYPO3 renders different pages
depending on the type-value. Normally the PAGE-object displaying the page content is named "page" and has the "type=1"
value.

Submitting data to index.php
You can submit data to index.php for several reasons. These are the standard features included in the script

Login/Logout:
Detected by class "t3lib_userauth" looking for the var "logintype". If this is set, authentication is done.

Input may be of both GET and POST method.

Login:

logintype = "login"

pass = the password

user = the username

pid = the id of the page where the user-archive is found. You don't need this value if the TYPO3_CONF_VARS[FE]
[checkFeUserPid] is set.

(redirect = No use)

Logout:

logintype = "logout"

See the cObject FORMS for an in-depth description

Search:
Detected by the cObject SEARCHRESULT, which proceeds with a search if "sword" && "scols" are set. The search MUST
submit to a page with such a content-object on!

Input may be of both GET and POST method.

Search:

sword = the searchwords

stype = the search type

scols = the tables/columns to search

locationData = Reference to the record carrying the form. Used to look up the original startingpoint of the search
(ONLY POST-method)

(redirect = No use)

scount = Used by the searchresult to indicate the number of results

spointer = Used by the searchresult to indicate the startingpoint for the next number of results.

See the cObject SEARCHRESULT for a complete description

TSref - 152

Emailforms:
Detected by the mainscript "index.php" looking for the var "formtype_mail" to be set. (could be the submit-button)

Input MUST be POST method. And the REFERER and HTTP_HOST must match. Also the locationData var must be sent
and at least point to the uid of a readable page.

Database-submit
Detected by the mainscript "index.php" looking for the var "formtype_db" to be set. (could be the submit-button)

Input MUST be POST method. And the REFERER and HTTP_HOST must match. To setup a script to handle the input, refer
to the FE_DATA object.

See examples from the typo3/sysext/cms/tslib/media/scripts/ folder, eg. "guest_submit.inc"

TSref - 153

